GPT-5/4o, Claude 4.5, Gemini 2.5/3, Grok 4 vision patterns for image analysis, document understanding, and visual QA. Use when implementing image captioning, document/chart analysis, or multi-image comparison.
View on GitHubyonatangross/skillforge-claude-plugin
ork
January 25, 2026
Select agents to install to:
npx add-skill https://github.com/yonatangross/skillforge-claude-plugin/blob/main/plugins/ork/skills/vision-language-models/SKILL.md -a claude-code --skill vision-language-modelsInstallation paths:
.claude/skills/vision-language-models/# Vision Language Models (2026)
Integrate vision capabilities from leading multimodal models for image understanding, document analysis, and visual reasoning.
## Overview
- Image captioning and description generation
- Visual question answering (VQA)
- Document/chart/diagram analysis with OCR
- Multi-image comparison and reasoning
- Bounding box detection and region analysis
- Video frame analysis
## Model Comparison (January 2026)
| Model | Context | Strengths | Vision Input |
|-------|---------|-----------|--------------|
| **GPT-5.2** | 128K | Best general reasoning, multimodal | Up to 10 images |
| **Claude Opus 4.5** | 200K | Best coding, sustained agent tasks | Up to 100 images |
| **Gemini 2.5 Pro** | 1M+ | Longest context, video analysis | 3,600 images max |
| **Gemini 3 Pro** | 1M | Deep Think, 100% AIME 2025 | Enhanced segmentation |
| **Grok 4** | 2M | Real-time X integration, DeepSearch | Images + upcoming video |
## Image Input Methods
### Base64 Encoding (All Providers)
```python
import base64
import mimetypes
def encode_image_base64(image_path: str) -> tuple[str, str]:
"""Encode local image to base64 with MIME type."""
mime_type, _ = mimetypes.guess_type(image_path)
mime_type = mime_type or "image/png"
with open(image_path, "rb") as f:
base64_data = base64.standard_b64encode(f.read()).decode("utf-8")
return base64_data, mime_type
```
### OpenAI GPT-5/4o Vision
```python
from openai import OpenAI
client = OpenAI()
def analyze_image_openai(image_path: str, prompt: str) -> str:
"""Analyze image using GPT-5 or GPT-4o."""
base64_data, mime_type = encode_image_base64(image_path)
response = client.chat.completions.create(
model="gpt-5", # or "gpt-4o", "gpt-4.1"
messages=[{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {
"url": f"data:{mime_type};base64,{base64_