Back to Skills

vertex-agent-builder

verified
View on GitHub

Marketplace

claude-code-plugins-plus

jeremylongshore/claude-code-plugins-plus-skills

Plugin

jeremy-vertex-ai

ai-ml

Repository

jeremylongshore/claude-code-plugins-plus-skills
1.1kstars

plugins/jeremy-vertex-ai/skills/vertex-agent-builder/SKILL.md

Last Verified

January 22, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/jeremylongshore/claude-code-plugins-plus-skills/blob/main/plugins/jeremy-vertex-ai/skills/vertex-agent-builder/SKILL.md -a claude-code --skill vertex-agent-builder

Installation paths:

Claude
.claude/skills/vertex-agent-builder/
Powered by add-skill CLI

Instructions

# Vertex AI Agent Builder

Build and deploy production-ready agents on Vertex AI with Gemini models, retrieval (RAG), function calling, and operational guardrails (validation, monitoring, cost controls).

## Overview

- Produces an agent scaffold aligned with Vertex AI Agent Engine deployment patterns.
- Helps choose models/regions, design tool/function interfaces, and wire up retrieval.
- Includes an evaluation + smoke-test checklist so deployments don’t regress.

## Prerequisites

- Google Cloud project with Vertex AI API enabled
- Permissions to deploy/operate Agent Engine runtimes (or a local-only build target)
- If using RAG: a document source (GCS/BigQuery/Firestore/etc) and an embeddings/index strategy
- Secrets handled via env vars or Secret Manager (never committed)

## Instructions

1. Clarify the agent’s job (user intents, inputs/outputs, latency and cost constraints).
2. Choose model + region and define tool/function interfaces (schemas, error contracts).
3. Implement retrieval (if needed): chunking, embeddings, index, and a “citation-first” response format.
4. Add evaluation: golden prompts, offline checks, and a minimal online smoke test.
5. Deploy (optional): provide the exact deployment command/config and verify endpoints + permissions.
6. Add ops: logs/metrics, alerting, quota/cost guardrails, and rollback steps.

## Output

- A Vertex AI agent scaffold (code/config) with clear extension points
- A retrieval plan (when applicable) and a validation/evaluation checklist
- Optional: deployment commands and post-deploy health checks

## Error Handling

- Quota/region issues: detect the failing service/quota and propose a scoped fix.
- Auth failures: identify the principal and missing role; prefer least-privilege remediation.
- Retrieval failures: validate indexing/embedding dimensions and add fallback behavior.
- Tool/function errors: enforce structured error responses and add regression tests.

## Examples

**Example: RAG support agent**
- Request: “De

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
2767 chars