jeremylongshore/claude-code-plugins-plus-skills
jeremy-vertex-ai
plugins/jeremy-vertex-ai/skills/vertex-agent-builder/SKILL.md
January 22, 2026
Select agents to install to:
npx add-skill https://github.com/jeremylongshore/claude-code-plugins-plus-skills/blob/main/plugins/jeremy-vertex-ai/skills/vertex-agent-builder/SKILL.md -a claude-code --skill vertex-agent-builderInstallation paths:
.claude/skills/vertex-agent-builder/# Vertex AI Agent Builder Build and deploy production-ready agents on Vertex AI with Gemini models, retrieval (RAG), function calling, and operational guardrails (validation, monitoring, cost controls). ## Overview - Produces an agent scaffold aligned with Vertex AI Agent Engine deployment patterns. - Helps choose models/regions, design tool/function interfaces, and wire up retrieval. - Includes an evaluation + smoke-test checklist so deployments don’t regress. ## Prerequisites - Google Cloud project with Vertex AI API enabled - Permissions to deploy/operate Agent Engine runtimes (or a local-only build target) - If using RAG: a document source (GCS/BigQuery/Firestore/etc) and an embeddings/index strategy - Secrets handled via env vars or Secret Manager (never committed) ## Instructions 1. Clarify the agent’s job (user intents, inputs/outputs, latency and cost constraints). 2. Choose model + region and define tool/function interfaces (schemas, error contracts). 3. Implement retrieval (if needed): chunking, embeddings, index, and a “citation-first” response format. 4. Add evaluation: golden prompts, offline checks, and a minimal online smoke test. 5. Deploy (optional): provide the exact deployment command/config and verify endpoints + permissions. 6. Add ops: logs/metrics, alerting, quota/cost guardrails, and rollback steps. ## Output - A Vertex AI agent scaffold (code/config) with clear extension points - A retrieval plan (when applicable) and a validation/evaluation checklist - Optional: deployment commands and post-deploy health checks ## Error Handling - Quota/region issues: detect the failing service/quota and propose a scoped fix. - Auth failures: identify the principal and missing role; prefer least-privilege remediation. - Retrieval failures: validate indexing/embedding dimensions and add fallback behavior. - Tool/function errors: enforce structured error responses and add regression tests. ## Examples **Example: RAG support agent** - Request: “De