Back to Skills

using-relational-databases

verified

Relational database implementation across Python, Rust, Go, and TypeScript. Use when building CRUD applications, transactional systems, or structured data storage. Covers PostgreSQL (primary), MySQL, SQLite, ORMs (SQLAlchemy, Prisma, SeaORM, GORM), query builders (Drizzle, sqlc, SQLx), migrations, connection pooling, and serverless databases (Neon, PlanetScale, Turso).

View on GitHub

Marketplace

ai-design-components

ancoleman/ai-design-components

Plugin

backend-ai-skills

Repository

ancoleman/ai-design-components
153stars

skills/using-relational-databases/SKILL.md

Last Verified

February 1, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/ancoleman/ai-design-components/blob/main/skills/using-relational-databases/SKILL.md -a claude-code --skill using-relational-databases

Installation paths:

Claude
.claude/skills/using-relational-databases/
Powered by add-skill CLI

Instructions

# Relational Databases

## Purpose

This skill guides relational database selection and implementation across multiple languages. Choose the optimal database engine, ORM/query builder, and deployment strategy for transactional systems, CRUD applications, and structured data storage.

## When to Use This Skill

**Trigger this skill when:**
- Building user authentication, content management, e-commerce applications
- Implementing CRUD operations (Create, Read, Update, Delete)
- Designing data models with relationships (users → posts, orders → items)
- Migrating schemas safely in production
- Setting up connection pooling for performance
- Evaluating serverless database options (Neon, PlanetScale, Turso)
- Integrating with frontend skills (forms, tables, dashboards, search-filter)

**Skip this skill for:**
- Time-series data at scale (use time-series databases)
- Real-time analytics (use columnar databases)
- Document-heavy workloads (use document databases)
- Key-value caching (use Redis, Memcached)

## Quick Reference: Database Selection

```
Database Selection Decision Tree
═══════════════════════════════════════════════════════════

PRIMARY CONCERN?
├─ MAXIMUM FLEXIBILITY & EXTENSIONS (JSON, arrays, vector search)
│  └─ PostgreSQL
│     ├─ Serverless → Neon (scale-to-zero, database branching)
│     └─ Traditional → Self-hosted, AWS RDS, Google Cloud SQL
│
├─ EMBEDDED / EDGE DEPLOYMENT (local-first, global latency)
│  └─ SQLite or Turso
│     ├─ Global distribution → Turso (libSQL, edge replicas)
│     └─ Local-only → SQLite (embedded, zero-config)
│
├─ LEGACY SYSTEM / MYSQL REQUIRED
│  └─ MySQL
│     ├─ Serverless → PlanetScale (non-blocking migrations)
│     └─ Traditional → Self-hosted, AWS RDS, Google Cloud SQL
│
└─ RAPID PROTOTYPING
   ├─ Python → SQLModel (FastAPI) or SQLAlchemy 2.0
   ├─ TypeScript → Prisma (best DX) or Drizzle (performance)
   ├─ Rust → SQLx (compile-time checks)
   └─ Go → sqlc (type-safe code generation)
```

## Quick Reference: ORM vs Que

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
9291 chars