Back to Skills

test-fixture-generator

verified

Generate synthetic test data with edge cases for ETL pipeline testing.

View on GitHub

Marketplace

majestic-marketplace

majesticlabs-dev/majestic-marketplace

Plugin

majestic-data

Repository

majesticlabs-dev/majestic-marketplace
19stars

plugins/majestic-data/skills/test-fixture-generator/SKILL.md

Last Verified

January 24, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/majesticlabs-dev/majestic-marketplace/blob/main/plugins/majestic-data/skills/test-fixture-generator/SKILL.md -a claude-code --skill test-fixture-generator

Installation paths:

Claude
.claude/skills/test-fixture-generator/
Powered by add-skill CLI

Instructions

# Test Fixture Generator

Generate test fixtures matching schema specifications with automatic edge case injection.

## Core Generator

```python
def generate_fixtures(
    schema: dict,
    count: int = 100,
    edge_cases: bool = True
) -> pd.DataFrame:
    """Generate test data matching schema."""
    data = {}

    for col, spec in schema.items():
        if spec['type'] == 'integer':
            data[col] = generate_integers(count, spec)
        elif spec['type'] == 'string':
            data[col] = generate_strings(count, spec)
        elif spec['type'] == 'date':
            data[col] = generate_dates(count, spec)
        elif spec['type'] == 'float':
            data[col] = generate_floats(count, spec)
        elif spec['type'] == 'boolean':
            data[col] = generate_booleans(count)
        elif spec['type'] == 'enum':
            data[col] = generate_enums(count, spec['values'])

    df = pd.DataFrame(data)

    if edge_cases:
        df = add_edge_cases(df, schema)

    return df
```

## Edge Case Injection

```python
def add_edge_cases(df: pd.DataFrame, schema: dict) -> pd.DataFrame:
    """Add rows with boundary and edge case values."""
    edge_rows = []

    # Null row (where nullable)
    null_row = {
        col: None if spec.get('nullable', True) else df[col].iloc[0]
        for col, spec in schema.items()
    }
    edge_rows.append(null_row)

    # Boundary values per column
    for col, spec in schema.items():
        base_row = df.iloc[0].to_dict()

        if spec['type'] == 'integer':
            edge_rows.append({**base_row, col: spec.get('min', 0)})
            edge_rows.append({**base_row, col: spec.get('max', 2147483647)})

        elif spec['type'] == 'string':
            edge_rows.append({**base_row, col: ''})  # Empty string
            edge_rows.append({**base_row, col: 'a' * spec.get('max_length', 255)})  # Max length

        elif spec['type'] == 'float':
            edge_rows.append({**base_row, col: 0.0})
            edge_ro

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
4103 chars