Back to Skills

tensorflow-model-deployment

verified

Deploy and serve TensorFlow models

View on GitHub

Marketplace

han

TheBushidoCollective/han

Plugin

jutsu-tensorflow

Technique

Repository

TheBushidoCollective/han
60stars

jutsu/jutsu-tensorflow/skills/tensorflow-model-deployment/SKILL.md

Last Verified

January 24, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/TheBushidoCollective/han/blob/main/jutsu/jutsu-tensorflow/skills/tensorflow-model-deployment/SKILL.md -a claude-code --skill tensorflow-model-deployment

Installation paths:

Claude
.claude/skills/tensorflow-model-deployment/
Powered by add-skill CLI

Instructions

# TensorFlow Model Deployment

Deploy TensorFlow models to production environments using SavedModel format, TensorFlow Lite for mobile and edge devices, quantization techniques, and serving infrastructure. This skill covers model export, optimization, conversion, and deployment strategies.

## SavedModel Export

### Basic SavedModel Export

```python
# Save model to TensorFlow SavedModel format
model.save('path/to/saved_model')

# Load SavedModel
loaded_model = tf.keras.models.load_model('path/to/saved_model')

# Make predictions with loaded model
predictions = loaded_model.predict(test_data)
```

### Create Serving Model

```python
# Create serving model from classifier
serving_model = classifier.create_serving_model()

# Inspect model inputs and outputs
print(f'Model\'s input shape and type: {serving_model.inputs}')
print(f'Model\'s output shape and type: {serving_model.outputs}')

# Save serving model
serving_model.save('model_path')
```

### Export with Signatures

```python
# Define serving signature
@tf.function(input_signature=[tf.TensorSpec(shape=[None, 224, 224, 3], dtype=tf.float32)])
def serve(images):
    return model(images, training=False)

# Save with signature
tf.saved_model.save(
    model,
    'saved_model_dir',
    signatures={'serving_default': serve}
)
```

## TensorFlow Lite Conversion

### Basic TFLite Conversion

```python
# Convert SavedModel to TFLite
converter = tf.lite.TFLiteConverter.from_saved_model('saved_model_dir')
tflite_model = converter.convert()

# Save TFLite model
with open('model.tflite', 'wb') as f:
    f.write(tflite_model)
```

### From Keras Model

```python
# Convert Keras model directly to TFLite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save to file
import pathlib
tflite_models_dir = pathlib.Path("tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)

tflite_model_file = tflite_models_dir / "mnist_model.tflite"
tflite_model_file.write_bytes(tflite_m

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
18051 chars