Optimize Apache Spark jobs with partitioning, caching, shuffle optimization, and memory tuning. Use when improving Spark performance, debugging slow jobs, or scaling data processing pipelines.
View on GitHubwshobson/agents
data-engineering
January 19, 2026
Select agents to install to:
npx add-skill https://github.com/wshobson/agents/blob/main/plugins/data-engineering/skills/spark-optimization/SKILL.md -a claude-code --skill spark-optimizationInstallation paths:
.claude/skills/spark-optimization/# Apache Spark Optimization
Production patterns for optimizing Apache Spark jobs including partitioning strategies, memory management, shuffle optimization, and performance tuning.
## When to Use This Skill
- Optimizing slow Spark jobs
- Tuning memory and executor configuration
- Implementing efficient partitioning strategies
- Debugging Spark performance issues
- Scaling Spark pipelines for large datasets
- Reducing shuffle and data skew
## Core Concepts
### 1. Spark Execution Model
```
Driver Program
↓
Job (triggered by action)
↓
Stages (separated by shuffles)
↓
Tasks (one per partition)
```
### 2. Key Performance Factors
| Factor | Impact | Solution |
| ----------------- | --------------------- | ----------------------------- |
| **Shuffle** | Network I/O, disk I/O | Minimize wide transformations |
| **Data Skew** | Uneven task duration | Salting, broadcast joins |
| **Serialization** | CPU overhead | Use Kryo, columnar formats |
| **Memory** | GC pressure, spills | Tune executor memory |
| **Partitions** | Parallelism | Right-size partitions |
## Quick Start
```python
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
# Create optimized Spark session
spark = (SparkSession.builder
.appName("OptimizedJob")
.config("spark.sql.adaptive.enabled", "true")
.config("spark.sql.adaptive.coalescePartitions.enabled", "true")
.config("spark.sql.adaptive.skewJoin.enabled", "true")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.sql.shuffle.partitions", "200")
.getOrCreate())
# Read with optimized settings
df = (spark.read
.format("parquet")
.option("mergeSchema", "false")
.load("s3://bucket/data/"))
# Efficient transformations
result = (df
.filter(F.col("date") >= "2024-01-01")
.select("id", "amount", "category")
.groupBy("