Back to Skills

recommendation-engine

verified

Build recommendation systems with collaborative filtering, matrix factorization, hybrid approaches. Use for product recommendations, personalization, or encountering cold start, sparsity, quality evaluation issues.

View on GitHub

Marketplace

claude-skills

secondsky/claude-skills

Plugin

recommendation-engine

data

Repository

secondsky/claude-skills
28stars

plugins/recommendation-engine/skills/recommendation-engine/SKILL.md

Last Verified

January 24, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/secondsky/claude-skills/blob/main/plugins/recommendation-engine/skills/recommendation-engine/SKILL.md -a claude-code --skill recommendation-engine

Installation paths:

Claude
.claude/skills/recommendation-engine/
Powered by add-skill CLI

Instructions

# Recommendation Engine

Build recommendation systems for personalized content and product suggestions.

## Recommendation Approaches

| Approach | How It Works | Pros | Cons |
|----------|--------------|------|------|
| Collaborative | User-item interactions | Discovers hidden patterns | Cold start |
| Content-based | Item features | Works for new items | Limited discovery |
| Hybrid | Combines both | Best of both | Complex |

## Collaborative Filtering

```python
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.metrics.pairwise import cosine_similarity

class CollaborativeFilter:
    def __init__(self):
        self.user_similarity = None
        self.item_similarity = None

    def fit(self, user_item_matrix):
        # User-based similarity
        self.user_similarity = cosine_similarity(user_item_matrix)
        # Item-based similarity
        self.item_similarity = cosine_similarity(user_item_matrix.T)

    def recommend_for_user(self, user_id, n=10):
        scores = self.user_similarity[user_id].dot(self.user_item_matrix)
        # Exclude already interacted items
        already_interacted = self.user_item_matrix[user_id].nonzero()[0]
        scores[already_interacted] = -np.inf
        return np.argsort(scores)[-n:][::-1]
```

## Matrix Factorization (SVD)

```python
from sklearn.decomposition import TruncatedSVD

class MatrixFactorization:
    def __init__(self, n_factors=50):
        self.svd = TruncatedSVD(n_components=n_factors)

    def fit(self, user_item_matrix):
        self.user_factors = self.svd.fit_transform(user_item_matrix)
        self.item_factors = self.svd.components_.T

    def predict(self, user_id, item_id):
        return np.dot(self.user_factors[user_id], self.item_factors[item_id])
```

## Hybrid Recommender

```python
class HybridRecommender:
    def __init__(self, collab_weight=0.7, content_weight=0.3):
        self.collab = CollaborativeFilter()
        self.content = ContentBasedFilter()
        self.weights 

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
10142 chars