Implement proper randomization procedures for experiments. Use when: (1) Assigning participants to conditions, (2) Ensuring unbiased allocation, (3) Meeting CONSORT standards, (4) Pre-registration.
View on GitHubastoreyai/ai_scientist
research-assistant
January 20, 2026
Select agents to install to:
npx add-skill https://github.com/astoreyai/ai_scientist/blob/main/skills/randomization/SKILL.md -a claude-code --skill randomizationInstallation paths:
.claude/skills/randomization/# Randomization Skill ## Purpose Implement proper random assignment to minimize selection bias. ## Randomization Methods **1. Simple Randomization** - Coin flip, random number generator - Best for large samples (N>200) - Risk of imbalance in small samples **2. Block Randomization** - Ensures equal group sizes - Blocks of 4, 6, or 8 - Example: AABB, ABAB, BABA, BBAA **3. Stratified Randomization** - Balance prognostic factors - Stratify by sex, age group, severity - Then randomize within strata **4. Minimization** - Dynamic allocation - Minimizes imbalance across factors - Used in small trials ## Implementation **Steps:** 1. Generate random sequence (with seed) 2. Document sequence generation 3. Implement allocation concealment 4. Execute randomization 5. Document actual allocation **Example (Python):** ```python import random random.seed(12345) # Document seed sequence = ['A', 'B'] * 50 # 100 participants random.shuffle(sequence) ``` --- **Version:** 1.0.0