Back to Skills

rag-architecture

verified

Retrieval-Augmented Generation (RAG) system design patterns, chunking strategies, embedding models, retrieval techniques, and context assembly. Use when designing RAG pipelines, improving retrieval quality, or building knowledge-grounded LLM applications.

View on GitHub

Marketplace

melodic-software

melodic-software/claude-code-plugins

Plugin

systems-design

Repository
Verified Org

melodic-software/claude-code-plugins
13stars

plugins/systems-design/skills/rag-architecture/SKILL.md

Last Verified

January 21, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/melodic-software/claude-code-plugins/blob/main/plugins/systems-design/skills/rag-architecture/SKILL.md -a claude-code --skill rag-architecture

Installation paths:

Claude
.claude/skills/rag-architecture/
Powered by add-skill CLI

Instructions

# RAG Architecture

## When to Use This Skill

Use this skill when:

- Designing RAG pipelines for LLM applications
- Choosing chunking and embedding strategies
- Optimizing retrieval quality and relevance
- Building knowledge-grounded AI systems
- Implementing hybrid search (dense + sparse)
- Designing multi-stage retrieval pipelines

**Keywords:** RAG, retrieval-augmented generation, embeddings, chunking, vector search, semantic search, context window, grounding, knowledge base, hybrid search, reranking, BM25, dense retrieval

## RAG Architecture Overview

```text
┌─────────────────────────────────────────────────────────────────────┐
│                       RAG Pipeline                                  │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  ┌──────────────┐    ┌──────────────┐    ┌──────────────────────┐  │
│  │   Ingestion  │    │   Indexing   │    │    Vector Store      │  │
│  │   Pipeline   │───▶│   Pipeline   │───▶│    (Embeddings)      │  │
│  └──────────────┘    └──────────────┘    └──────────────────────┘  │
│         │                   │                       │               │
│    Documents           Chunks +                 Indexed             │
│                       Embeddings               Vectors              │
│                                                     │               │
│  ┌──────────────┐    ┌──────────────┐    ┌──────────────────────┐  │
│  │    Query     │    │  Retrieval   │    │   Context Assembly   │  │
│  │  Processing  │───▶│   Engine     │───▶│   + Generation       │  │
│  └──────────────┘    └──────────────┘    └──────────────────────┘  │
│         │                   │                       │               │
│    User Query          Top-K Chunks            LLM Response         │
│                                                                     │
└──────────────────────────────────────────────────────────────────

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
12572 chars