Profile and optimize Python code using cProfile, memory profilers, and performance best practices. Use when debugging slow Python code, optimizing bottlenecks, or improving application performance.
View on GitHubacaprino/alfio-claude-plugins
python-development
plugins/python-development/skills/python-performance-optimization/SKILL.md
January 25, 2026
Select agents to install to:
npx add-skill https://github.com/acaprino/alfio-claude-plugins/blob/main/plugins/python-development/skills/python-performance-optimization/SKILL.md -a claude-code --skill python-performance-optimizationInstallation paths:
.claude/skills/python-performance-optimization/# Python Performance Optimization
Comprehensive guide to profiling, analyzing, and optimizing Python code for better performance, including CPU profiling, memory optimization, and implementation best practices.
## When to Use This Skill
- Identifying performance bottlenecks in Python applications
- Reducing application latency and response times
- Optimizing CPU-intensive operations
- Reducing memory consumption and memory leaks
- Improving database query performance
- Optimizing I/O operations
- Speeding up data processing pipelines
- Implementing high-performance algorithms
- Profiling production applications
## Core Concepts
### 1. Profiling Types
- **CPU Profiling**: Identify time-consuming functions
- **Memory Profiling**: Track memory allocation and leaks
- **Line Profiling**: Profile at line-by-line granularity
- **Call Graph**: Visualize function call relationships
### 2. Performance Metrics
- **Execution Time**: How long operations take
- **Memory Usage**: Peak and average memory consumption
- **CPU Utilization**: Processor usage patterns
- **I/O Wait**: Time spent on I/O operations
### 3. Optimization Strategies
- **Algorithmic**: Better algorithms and data structures
- **Implementation**: More efficient code patterns
- **Parallelization**: Multi-threading/processing
- **Caching**: Avoid redundant computation
- **Native Extensions**: C/Rust for critical paths
## Quick Start
### Basic Timing
```python
import time
def measure_time():
"""Simple timing measurement."""
start = time.time()
# Your code here
result = sum(range(1000000))
elapsed = time.time() - start
print(f"Execution time: {elapsed:.4f} seconds")
return result
# Better: use timeit for accurate measurements
import timeit
execution_time = timeit.timeit(
"sum(range(1000000))",
number=100
)
print(f"Average time: {execution_time/100:.6f} seconds")
```
## Profiling Tools
### Pattern 1: cProfile - CPU Profiling
```python
import cProfile
import pstats