Manage scientific Python dependencies and environments using pixi package manager with unified conda-forge and PyPI support. Use when setting up project environments, managing dependencies, creating reproducible workflows, or working with complex scientific packages requiring compiled libraries. Ideal for multi-environment projects, cross-platform development, and replacing conda/mamba workflows.
View on GitHubuw-ssec/rse-plugins
scientific-python-development
plugins/scientific-python-development/skills/pixi-package-manager/SKILL.md
January 22, 2026
Select agents to install to:
npx add-skill https://github.com/uw-ssec/rse-plugins/blob/main/plugins/scientific-python-development/skills/pixi-package-manager/SKILL.md -a claude-code --skill pixi-package-managerInstallation paths:
.claude/skills/pixi-package-manager/# Pixi Package Manager for Scientific Python Master **pixi**, the modern package manager that unifies conda and PyPI ecosystems for fast, reproducible scientific Python development. Learn how to manage complex scientific dependencies, create isolated environments, and build reproducible workflows using `pyproject.toml` integration. **Official Documentation**: https://pixi.sh **GitHub**: https://github.com/prefix-dev/pixi ## Quick Reference Card ### Installation & Setup ```bash # Install pixi (macOS/Linux) curl -fsSL https://pixi.sh/install.sh | bash # Install pixi (Windows) iwr -useb https://pixi.sh/install.ps1 | iex # Initialize new project with pyproject.toml pixi init --format pyproject # Initialize existing Python project pixi init --format pyproject --import-environment ``` ### Essential Commands ```bash # Add dependencies pixi add numpy scipy pandas # conda packages pixi add --pypi pytest-cov # PyPI-only packages pixi add --feature dev pytest ruff # dev environment # Install all dependencies pixi install # Run commands in environment pixi run python script.py pixi run pytest # Shell with environment activated pixi shell # Add tasks pixi task add test "pytest tests/" pixi task add docs "sphinx-build docs/ docs/_build" # Run tasks pixi run test pixi run docs # Update dependencies pixi update numpy # update specific pixi update # update all # List packages pixi list pixi tree numpy # show dependency tree ``` ### Quick Decision Tree: Pixi vs UV vs Both ``` Need compiled scientific libraries (NumPy, SciPy, GDAL)? ├─ YES → Use pixi (conda-forge has pre-built binaries) └─ NO → Consider uv for pure Python projects Need multi-language support (Python + R, Julia, C++)? ├─ YES → Use pixi (supports conda ecosystem) └─ NO → uv sufficient for Python-only Need multiple environments (dev, test, prod, GPU, CPU)? ├─ YES → Use pixi features for enviro