Optimizes Python library performance through profiling (cProfile, PyInstrument), memory analysis (memray, tracemalloc), benchmarking (pytest-benchmark), and optimization strategies. Use when analyzing performance bottlenecks, finding memory leaks, or setting up performance regression testing.
View on GitHubwdm0006/python-skills
python-library-quality
skills/performance/SKILL.md
January 20, 2026
Select agents to install to:
npx add-skill https://github.com/wdm0006/python-skills/blob/main/skills/performance/SKILL.md -a claude-code --skill optimizing-python-performanceInstallation paths:
.claude/skills/optimizing-python-performance/# Python Performance Optimization
## Profiling Quick Start
```bash
# PyInstrument (statistical, readable output)
python -m pyinstrument script.py
# cProfile (detailed, built-in)
python -m cProfile -s cumulative script.py
# Memory profiling
pip install memray
memray run script.py
memray flamegraph memray-*.bin
```
## PyInstrument Usage
```python
from pyinstrument import Profiler
profiler = Profiler()
profiler.start()
result = my_function()
profiler.stop()
print(profiler.output_text(unicode=True, color=True))
```
## Memory Analysis
```python
import tracemalloc
tracemalloc.start()
# ... code ...
snapshot = tracemalloc.take_snapshot()
for stat in snapshot.statistics('lineno')[:10]:
print(stat)
```
## Benchmarking (pytest-benchmark)
```python
def test_encode_benchmark(benchmark):
result = benchmark(encode, 37.7749, -122.4194)
assert len(result) == 12
```
```bash
pytest tests/ --benchmark-only
pytest tests/ --benchmark-compare
```
## Common Optimizations
```python
# Use set for membership (O(1) vs O(n))
valid = set(items)
if item in valid: ...
# Use deque for queue operations
from collections import deque
queue = deque()
queue.popleft() # O(1) vs list.pop(0) O(n)
# Use generators for large data
def process(items):
for item in items:
yield transform(item)
# Cache expensive computations
from functools import lru_cache
@lru_cache(maxsize=1000)
def expensive(x):
return compute(x)
# String building
result = "".join(str(x) for x in items) # Not += in loop
```
## Algorithm Complexity
| Operation | list | set | dict |
|-----------|------|-----|------|
| Lookup | O(n) | O(1) | O(1) |
| Insert | O(1) | O(1) | O(1) |
| Delete | O(n) | O(1) | O(1) |
For detailed strategies, see:
- **[PROFILING.md](PROFILING.md)** - Advanced profiling techniques
- **[BENCHMARKS.md](BENCHMARKS.md)** - CI benchmark regression testing
## Optimization Checklist
```
Before Optimizing:
- [ ] Confirm there's a real problem
- [ ] Profile to find actual boIssues Found: