Comprehensive ML model evaluation with multiple metrics, cross-validation, and statistical testing. Activates for "evaluate model", "model metrics", "model performance", "compare models", "validation metrics", "test accuracy", "precision recall", "ROC AUC". Generates detailed evaluation reports with visualizations and statistical significance tests, integrated with SpecWeave increment documentation.
View on GitHubanton-abyzov/specweave
sw-ml
January 25, 2026
Select agents to install to:
npx add-skill https://github.com/anton-abyzov/specweave/blob/main/plugins/specweave-ml/skills/model-evaluator/SKILL.md -a claude-code --skill model-evaluatorInstallation paths:
.claude/skills/model-evaluator/# Model Evaluator
## Overview
Provides comprehensive, unbiased model evaluation following ML best practices. Goes beyond simple accuracy to evaluate models across multiple dimensions, ensuring confident deployment decisions.
## Core Evaluation Framework
### 1. Classification Metrics
- Accuracy, Precision, Recall, F1-score
- ROC AUC, PR AUC
- Confusion matrix
- Per-class metrics (for multi-class)
- Class imbalance handling
### 2. Regression Metrics
- RMSE, MAE, MAPE
- R² score, Adjusted R²
- Residual analysis
- Prediction interval coverage
### 3. Ranking Metrics (Recommendations)
- Precision@K, Recall@K
- NDCG@K, MAP@K
- MRR (Mean Reciprocal Rank)
- Coverage, Diversity
### 4. Statistical Validation
- Cross-validation (K-fold, stratified, time-series)
- Confidence intervals
- Statistical significance testing
- Calibration curves
## Usage
```python
from specweave import ModelEvaluator
evaluator = ModelEvaluator(
model=trained_model,
X_test=X_test,
y_test=y_test,
increment="0042"
)
# Comprehensive evaluation
report = evaluator.evaluate_all()
# Generates:
# - .specweave/increments/0042.../evaluation-report.md
# - Visualizations (confusion matrix, ROC curves, etc.)
# - Statistical tests
```
## Evaluation Report Structure
```markdown
# Model Evaluation Report: XGBoost Classifier
## Overall Performance
- **Accuracy**: 0.87 ± 0.02 (95% CI: [0.85, 0.89])
- **ROC AUC**: 0.92 ± 0.01
- **F1 Score**: 0.85 ± 0.02
## Per-Class Performance
| Class | Precision | Recall | F1 | Support |
|---------|-----------|--------|------|---------|
| Class 0 | 0.88 | 0.85 | 0.86 | 1000 |
| Class 1 | 0.84 | 0.87 | 0.86 | 800 |
## Confusion Matrix
[Visualization embedded]
## Cross-Validation Results
- 5-fold CV accuracy: 0.86 ± 0.03
- Fold scores: [0.85, 0.88, 0.84, 0.87, 0.86]
- No overfitting detected (train=0.89, val=0.86, gap=0.03)
## Statistical Tests
- Comparison vs baseline: p=0.001 (highly significant)
- Comparison vs previous model