Domain-specific ML expert for NLP, Computer Vision, and Time Series. Text classification, NER, sentiment (BERT, transformers), image classification, object detection (YOLO, ResNet), and forecasting (ARIMA, Prophet, LSTM). Use for specialized ML domains.
View on GitHubanton-abyzov/specweave
sw-ml
February 4, 2026
Select agents to install to:
npx add-skill https://github.com/anton-abyzov/specweave/blob/main/plugins/specweave-ml/skills/ml-specialist/SKILL.md -a claude-code --skill ml-specialistInstallation paths:
.claude/skills/ml-specialist/# ML Specialist
Expert in domain-specific machine learning: NLP, Computer Vision, and Time Series.
## ⚠️ Chunking Rule
Large domain pipelines = 800+ lines. Generate ONE component per response.
---
## NLP (Natural Language Processing)
### Tasks Supported
- **Text Classification**: Sentiment, topic, intent classification
- **Named Entity Recognition (NER)**: Extract entities (PERSON, ORG, LOC)
- **Text Generation**: GPT-based text completion
- **Embeddings**: Sentence/document embeddings for similarity
### Models
- **Small datasets (<10K)**: DistilBERT (6x faster than BERT)
- **Medium datasets (10K-100K)**: BERT-base, RoBERTa
- **Large datasets (>100K)**: RoBERTa-large, DeBERTa
### Example
```python
from transformers import pipeline
# Sentiment analysis
classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
result = classifier("This product is amazing!")
# [{'label': 'POSITIVE', 'score': 0.9998}]
# Named Entity Recognition
ner = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
entities = ner("Apple CEO Tim Cook announced new products in Cupertino")
```
---
## Computer Vision
### Tasks Supported
- **Image Classification**: Binary/multi-class classification
- **Object Detection**: Bounding boxes + class labels
- **Semantic Segmentation**: Pixel-level classification
- **Image Generation**: GANs, diffusion models
### Models
- **Classification**: ResNet, EfficientNet, Vision Transformer (ViT)
- **Detection**: YOLOv8, Faster R-CNN, RetinaNet
- **Segmentation**: U-Net, DeepLabV3, SegFormer
### Example
```python
import torch
from torchvision import models, transforms
# Image classification with ResNet
model = models.resnet50(pretrained=True)
model.eval()
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Object detection with YOLOv8
from