Back to Skills

ml-deployment-helper

verified

Prepares ML models for production deployment with containerization, API creation, monitoring setup, and A/B testing. Activates for "deploy model", "production deployment", "model API", "containerize model", "docker ml", "serving ml model", "model monitoring", "A/B test model". Generates deployment artifacts and ensures models are production-ready with monitoring, versioning, and rollback capabilities.

View on GitHub

Marketplace

specweave

anton-abyzov/specweave

Plugin

sw-ml

development

Repository

anton-abyzov/specweave
27stars

plugins/specweave-ml/skills/ml-deployment-helper/SKILL.md

Last Verified

January 25, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/anton-abyzov/specweave/blob/main/plugins/specweave-ml/skills/ml-deployment-helper/SKILL.md -a claude-code --skill ml-deployment-helper

Installation paths:

Claude
.claude/skills/ml-deployment-helper/
Powered by add-skill CLI

Instructions

# ML Deployment Helper

## Overview

Bridges the gap between trained models and production systems. Generates deployment artifacts, APIs, monitoring, and A/B testing infrastructure following MLOps best practices.

## Deployment Checklist

Before deploying any model, this skill ensures:

- ✅ Model versioned and tracked
- ✅ Dependencies documented (requirements.txt/Dockerfile)
- ✅ API endpoint created
- ✅ Input validation implemented
- ✅ Monitoring configured
- ✅ A/B testing ready
- ✅ Rollback plan documented
- ✅ Performance benchmarked

## Deployment Patterns

### Pattern 1: REST API (FastAPI)

```python
from specweave import create_model_api

# Generates production-ready API
api = create_model_api(
    model_path="models/model-v3.pkl",
    increment="0042",
    framework="fastapi"
)

# Creates:
# - api/
#   ├── main.py (FastAPI app)
#   ├── models.py (Pydantic schemas)
#   ├── predict.py (Prediction logic)
#   ├── Dockerfile
#   ├── requirements.txt
#   └── tests/
```

Generated `main.py`:
```python
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import joblib

app = FastAPI(title="Recommendation Model API", version="0042-v3")

model = joblib.load("model-v3.pkl")

class PredictionRequest(BaseModel):
    user_id: int
    context: dict

@app.post("/predict")
async def predict(request: PredictionRequest):
    try:
        prediction = model.predict([request.dict()])
        return {
            "recommendations": prediction.tolist(),
            "model_version": "0042-v3",
            "timestamp": datetime.now()
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health():
    return {"status": "healthy", "model_loaded": model is not None}
```

### Pattern 2: Batch Prediction

```python
from specweave import create_batch_predictor

# For offline scoring
batch_predictor = create_batch_predictor(
    model_path="models/model-v3.pkl",
    increment="0042",
    input_path=

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
7194 chars