Master AI-powered natural language data exploration with Lumen AI. Use this skill when building conversational data analysis interfaces, enabling natural language queries to databases, creating custom AI agents for domain-specific analytics, implementing RAG with document context, or deploying self-service analytics with LLM-generated SQL and visualizations.
View on GitHubuw-ssec/rse-plugins
holoviz-visualization
January 22, 2026
Select agents to install to:
npx add-skill https://github.com/uw-ssec/rse-plugins/blob/main/community-plugins/holoviz-visualization/skills/lumen-ai/SKILL.md -a claude-code --skill lumen-aiInstallation paths:
.claude/skills/lumen-ai/# Lumen AI Skill ## Overview Lumen AI is an open-source, agent-based framework for conversational data exploration. Users ask questions in plain English and receive visualizations, SQL queries, and insights automatically generated by large language models. ### Key Features - **Natural Language Interface**: Ask questions in plain English - **Multi-LLM Support**: OpenAI, Anthropic, Google, Mistral, local models - **Agent Architecture**: Specialized agents for SQL, charts, analyses - **Extensible**: Custom agents, tools, and analyses - **Privacy-Focused**: Full local deployment option ### When to Use Lumen AI | Feature | Lumen AI | Lumen Dashboards | |---------|----------|------------------| | **Interface** | Conversational | Declarative YAML | | **Use Case** | Ad-hoc exploration | Fixed dashboards | | **Users** | Non-technical | Developers | **Use Lumen AI when**: Users need ad-hoc exploration, questions vary unpredictably, enabling self-service analytics. **Use Lumen Dashboards when**: Dashboard structure is fixed, no LLM costs desired. ## Quick Start ### Installation ```bash pip install lumen[ai] pip install openai # or anthropic for Claude ``` ### Launch Built-in Interface ```bash export OPENAI_API_KEY="sk-..." lumen-ai serve data/sales.csv # Or with database lumen-ai serve "postgresql://user:pass@localhost/mydb" ``` ### Python API ```python import lumen.ai as lmai import panel as pn from lumen.sources.duckdb import DuckDBSource pn.extension() # Configure LLM lmai.llm.llm_type = "anthropic" lmai.llm.model = "claude-3-5-sonnet-20241022" # Load data source = DuckDBSource(tables=["./data/sales.csv"]) # Create UI ui = lmai.ExplorerUI(source=source, title="Sales Analytics AI") ui.servable() ``` ### Example Queries - "What tables are available?" - "Show me total sales by region" - "Create a scatter plot of price vs quantity" - "What were the top 10 products last month?" ## Core Concepts ### 1. Agents Specialized components that handle specific ta