jeremylongshore/claude-code-plugins-plus-skills
langchain-pack
plugins/saas-packs/langchain-pack/skills/langchain-hello-world/SKILL.md
January 22, 2026
Select agents to install to:
npx add-skill https://github.com/jeremylongshore/claude-code-plugins-plus-skills/blob/main/plugins/saas-packs/langchain-pack/skills/langchain-hello-world/SKILL.md -a claude-code --skill langchain-hello-worldInstallation paths:
.claude/skills/langchain-hello-world/# LangChain Hello World
## Overview
Minimal working example demonstrating core LangChain functionality with chains and prompts.
## Prerequisites
- Completed `langchain-install-auth` setup
- Valid LLM provider API credentials configured
- Python 3.9+ or Node.js 18+ environment ready
## Instructions
### Step 1: Create Entry File
Create a new file `hello_langchain.py` for your hello world example.
### Step 2: Import and Initialize
```python
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
llm = ChatOpenAI(model="gpt-4o-mini")
```
### Step 3: Create Your First Chain
```python
from langchain_core.output_parsers import StrOutputParser
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
("user", "{input}")
])
chain = prompt | llm | StrOutputParser()
response = chain.invoke({"input": "Hello, LangChain!"})
print(response)
```
## Output
- Working Python file with LangChain chain
- Successful LLM response confirming connection
- Console output showing:
```
Hello! I'm your LangChain-powered assistant. How can I help you today?
```
## Error Handling
| Error | Cause | Solution |
|-------|-------|----------|
| Import Error | SDK not installed | Run `pip install langchain langchain-openai` |
| Auth Error | Invalid credentials | Check environment variable is set |
| Timeout | Network issues | Increase timeout or check connectivity |
| Rate Limit | Too many requests | Wait and retry with exponential backoff |
| Model Not Found | Invalid model name | Check available models in provider docs |
## Examples
### Simple Chain (Python)
```python
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | llm | StrOutputParser()
result = chain.invoke({"topic": "programming