Design LLM applications using the LangChain framework with agents, memory, and tool integration patterns. Use when building LangChain applications, implementing AI agents, or creating complex LLM workflows.
View on GitHubHermeticOrmus/after-the-third-cup
llm-application-dev
plugins/llm-application-dev/skills/langchain-architecture/SKILL.md
January 21, 2026
Select agents to install to:
npx add-skill https://github.com/HermeticOrmus/after-the-third-cup/blob/main/plugins/llm-application-dev/skills/langchain-architecture/SKILL.md -a claude-code --skill langchain-architectureInstallation paths:
.claude/skills/langchain-architecture/# LangChain Architecture Master the LangChain framework for building sophisticated LLM applications with agents, chains, memory, and tool integration. ## When to Use This Skill - Building autonomous AI agents with tool access - Implementing complex multi-step LLM workflows - Managing conversation memory and state - Integrating LLMs with external data sources and APIs - Creating modular, reusable LLM application components - Implementing document processing pipelines - Building production-grade LLM applications ## Core Concepts ### 1. Agents Autonomous systems that use LLMs to decide which actions to take. **Agent Types:** - **ReAct**: Reasoning + Acting in interleaved manner - **OpenAI Functions**: Leverages function calling API - **Structured Chat**: Handles multi-input tools - **Conversational**: Optimized for chat interfaces - **Self-Ask with Search**: Decomposes complex queries ### 2. Chains Sequences of calls to LLMs or other utilities. **Chain Types:** - **LLMChain**: Basic prompt + LLM combination - **SequentialChain**: Multiple chains in sequence - **RouterChain**: Routes inputs to specialized chains - **TransformChain**: Data transformations between steps - **MapReduceChain**: Parallel processing with aggregation ### 3. Memory Systems for maintaining context across interactions. **Memory Types:** - **ConversationBufferMemory**: Stores all messages - **ConversationSummaryMemory**: Summarizes older messages - **ConversationBufferWindowMemory**: Keeps last N messages - **EntityMemory**: Tracks information about entities - **VectorStoreMemory**: Semantic similarity retrieval ### 4. Document Processing Loading, transforming, and storing documents for retrieval. **Components:** - **Document Loaders**: Load from various sources - **Text Splitters**: Chunk documents intelligently - **Vector Stores**: Store and retrieve embeddings - **Retrievers**: Fetch relevant documents - **Indexes**: Organize docu