Enhanced AI-powered quality assessment with RISK SCORING (BMAD pattern) and quality gate decisions. Evaluates specifications, plans, and tests for clarity, testability, completeness, feasibility, maintainability, edge cases, and RISKS. Provides PASS/CONCERNS/FAIL decisions. Activates for validate quality, quality check, assess spec, evaluate increment, spec review, quality score, risk assessment, qa check, quality gate, /sw:qa command.
View on GitHubanton-abyzov/specweave
sw
January 25, 2026
Select agents to install to:
npx add-skill https://github.com/anton-abyzov/specweave/blob/main/plugins/specweave/skills/increment-quality-judge-v2/SKILL.md -a claude-code --skill increment-quality-judge-v2Installation paths:
.claude/skills/increment-quality-judge-v2/# Increment Quality Judge v2.0 **LLM-as-Judge Pattern Implementation** AI-powered quality assessment using the **LLM-as-Judge** pattern - an established AI/ML evaluation technique where an LLM evaluates outputs with chain-of-thought reasoning, BMAD-pattern risk scoring, and formal quality gate decisions (PASS/CONCERNS/FAIL). ## LLM-as-Judge: What It Is **LLM-as-Judge (LaaJ)** is a recognized pattern in AI/ML evaluation where a large language model assesses quality using structured reasoning. ``` ┌─────────────────────────────────────────────────────────────┐ │ LLM-as-Judge Pattern │ ├─────────────────────────────────────────────────────────────┤ │ Input: spec.md, plan.md, tasks.md │ │ │ │ Process: │ │ ┌─────────────────────────────────────────────────────┐ │ │ │ <thinking> │ │ │ │ 1. Read and understand the specification │ │ │ │ 2. Evaluate against 7 quality dimensions │ │ │ │ 3. Identify risks (P×I scoring) │ │ │ │ 4. Form evidence-based verdict │ │ │ │ </thinking> │ │ │ └─────────────────────────────────────────────────────┘ │ │ │ │ Output: Structured verdict with: │ │ • Dimension scores (0-100) │ │ • Risk assessment (CRITICAL/HIGH/MEDIUM/LOW) │ │ • Quality gate decision (PASS/CONCERNS/FAIL) │ │ • Actionable recommendations │ └─────────────────────────────────────────────────────────────┘ ``` **Why LLM-as-Judge works:** - **Consistency**: Uniform evaluation criteria without human fatigue - **Reasoning**: Chain-of-thought explains WHY something is an