Back to Skills

implementing-api-patterns

verified

API design and implementation across REST, GraphQL, gRPC, and tRPC patterns. Use when building backend services, public APIs, or service-to-service communication. Covers REST frameworks (FastAPI, Axum, Gin, Hono), GraphQL libraries (Strawberry, async-graphql, gqlgen, Pothos), gRPC (Tonic, Connect-Go), tRPC for TypeScript, pagination strategies (cursor-based, offset-based), rate limiting, caching, versioning, and OpenAPI documentation generation. Includes frontend integration patterns for forms, tables, dashboards, and ai-chat skills.

View on GitHub

Marketplace

ai-design-components

ancoleman/ai-design-components

Plugin

backend-ai-skills

Repository

ancoleman/ai-design-components
153stars

skills/implementing-api-patterns/SKILL.md

Last Verified

February 1, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/ancoleman/ai-design-components/blob/main/skills/implementing-api-patterns/SKILL.md -a claude-code --skill implementing-api-patterns

Installation paths:

Claude
.claude/skills/implementing-api-patterns/
Powered by add-skill CLI

Instructions

# API Patterns Skill

## Purpose

Design and implement APIs using the optimal pattern and framework for the use case. Choose between REST, GraphQL, gRPC, and tRPC based on API consumers, performance requirements, and type safety needs.

## When to Use This Skill

Use when:
- Building backend APIs for web, mobile, or service consumers
- Connecting frontend components (forms, tables, dashboards) to databases
- Implementing pagination, rate limiting, or caching strategies
- Generating OpenAPI documentation automatically
- Choosing between REST, GraphQL, gRPC, or tRPC patterns
- Integrating authentication and authorization
- Optimizing API performance and scalability

## Quick Decision Framework

```
WHO CONSUMES YOUR API?
├─ PUBLIC/THIRD-PARTY DEVELOPERS → REST with OpenAPI
│  ├─ Python → FastAPI (auto-docs, 40k req/s)
│  ├─ TypeScript → Hono (edge-first, 50k req/s, 14KB)
│  ├─ Rust → Axum (140k req/s, <1ms latency)
│  └─ Go → Gin (100k+ req/s, mature ecosystem)
│
├─ FRONTEND TEAM (same org)
│  ├─ TypeScript full-stack? → tRPC (E2E type safety)
│  └─ Complex data needs? → GraphQL
│      ├─ Python → Strawberry
│      ├─ Rust → async-graphql
│      ├─ Go → gqlgen
│      └─ TypeScript → Pothos
│
├─ SERVICE-TO-SERVICE (microservices)
│  └─ High performance → gRPC
│      ├─ Rust → Tonic
│      ├─ Go → Connect-Go (browser-friendly)
│      └─ Python → grpcio
│
└─ MOBILE APPS
   ├─ Bandwidth constrained → GraphQL (request only needed fields)
   └─ Simple CRUD → REST (standard, well-understood)
```

## REST Framework Selection

### Python: FastAPI (Recommended)

**Key Features:** Auto OpenAPI docs, Pydantic v2 validation, async/await, 40k req/s

**Basic Example:**
```python
from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"id": 1, **item.dict()}
```

See `references/rest-design-principles.md` for FastAPI patterns and `examples/pyt

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
10941 chars