Generate comprehensive model cards and upload fine-tuned models to Hugging Face Hub with professional documentation
View on GitHubchrisvoncsefalvay/funsloth
funsloth
January 20, 2026
Select agents to install to:
npx add-skill https://github.com/chrisvoncsefalvay/funsloth/blob/main/skills/funsloth-upload/SKILL.md -a claude-code --skill funsloth-uploadInstallation paths:
.claude/skills/funsloth-upload/# Model Upload & Card Generator
Create model cards and upload fine-tuned models to Hugging Face Hub.
## Gather Context
If coming from training manager, you should have:
- `model_path`, `base_model`, `dataset`, `technique`
- `training_config` (LoRA rank, LR, epochs)
- `final_loss`, `training_time`, `hardware`
If missing, ask for essential information.
## Configuration
### 1. Repository Settings
Ask for:
- **Repo name**: `username/model-name`
- **Visibility**: Public or Private
- **License**: MIT, Apache 2.0, CC-BY-4.0, Llama 3 Community, etc.
### 2. Export Formats
Options:
1. **LoRA adapter only** (~50-200MB) - Users merge themselves
2. **Merged 16-bit** (15-140GB) - Ready to use
3. **GGUF quantized** (4-8GB) - For llama.cpp/Ollama
4. **All of the above** (Recommended)
### 3. GGUF Quantization
If GGUF selected, ask which levels. See [references/GGUF_GUIDE.md](references/GGUF_GUIDE.md).
| Method | Size | Quality |
|--------|------|---------|
| Q4_K_M | ~4GB | Good (Recommended) |
| Q5_K_M | ~5GB | Better |
| Q8_0 | ~8GB | Best |
## Generate Model Card
Create README.md with:
1. **YAML Metadata** - license, tags, base_model, datasets
2. **Model Description** - Table with key attributes
3. **Training Details** - Hyperparameters, LoRA config, results
4. **Usage Examples** - Transformers, Unsloth, Ollama, llama.cpp
5. **Intended Use** - Primary use cases, out-of-scope
6. **Limitations** - Biases, known issues
7. **Citation** - BibTeX entry
## Execute Upload
### 1. Create Repository
```python
from huggingface_hub import create_repo
create_repo("username/model-name", private=False, exist_ok=True)
```
### 2. Upload Files
```python
from huggingface_hub import HfApi
api = HfApi()
# LoRA adapter
api.upload_folder(folder_path="./outputs/lora_adapter", repo_id="username/model")
# Model card
api.upload_file(path_or_fileobj="README.md", path_in_repo="README.md", repo_id="username/model")
```
### 3. Generate GGUF (if selected)
```python
from unsloth import Fas