Back to Skills

explore-dataset

verified

Explore an Axiom dataset to understand its schema, fields, volume, and patterns. Use when discovering a new dataset, investigating data structure, or understanding what data is available.

View on GitHub

Marketplace

axiom-cli

axiomhq/cli

Plugin

axiom-cli

Repository
Verified Org

axiomhq/cli
54stars

skills/explore-dataset/SKILL.md

Last Verified

February 3, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/axiomhq/cli/blob/main/skills/explore-dataset/SKILL.md -a claude-code --skill explore-dataset

Installation paths:

Claude
.claude/skills/explore-dataset/
Powered by add-skill CLI

Instructions

# Dataset Exploration

Systematically explore an Axiom dataset to understand its structure, content, and potential use cases.

## Arguments

When invoked with a dataset name (e.g., `/explore-dataset logs`), the name is available as `$ARGUMENTS`.

## Exploration Protocol

### 1. List Available Datasets

If no dataset specified, list what's available:

```bash
axiom dataset list -f json
```

### 2. Schema Discovery

**Always start here.** Discover actual field names and types:

```bash
axiom query "['<dataset>'] | getschema" --start-time -1h
```

Identify:
- Field names and types
- Dotted fields requiring bracket notation
- Timestamp fields
- Key dimensions (service, status, level)

**OTel trace data:** If schema contains `trace_id`, `span_id`, `attributes.*`, note that:
- Service fields are promoted: use `['service.name']` not `['resource.service.name']`
- Custom attributes: `['attributes.custom']['field']` with `tostring()` for aggregations
- See `axiom-apl` skill's [OTel reference](../axiom-apl/references/otel.md) for field mappings

### 3. Sample Data

Examine actual values:

```bash
axiom query "['<dataset>'] | limit 10" --start-time -1h -f json
```

Look for:
- Data structure and relationships
- Field value formats
- Data quality issues

### 4. Volume Analysis

Understand data volume patterns:

```bash
axiom query "['<dataset>'] | summarize count() by bin(_time, 1h) | sort by _time asc" --start-time -24h
```

Analyze:
- Event volume over time
- Data freshness
- Collection gaps

### 5. Categorical Field Analysis

For each key categorical field (status, level, service):

```bash
axiom query "['<dataset>'] | summarize count() by <field> | top 20 by count_" --start-time -1h
```

Identify:
- Value distributions
- Cardinality
- Key dimensions for filtering

### 6. Numerical Field Statistics

For numeric fields (duration, bytes, count):

```bash
axiom query "['<dataset>'] | summarize count(), min(<field>), max(<field>), avg(<field>), percentiles(<field>, 50, 95, 99)" -

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
3216 chars