Text embeddings for semantic search and similarity. Use when converting text to vectors, choosing embedding models, implementing chunking strategies, or building document similarity features.
View on GitHubyonatangross/orchestkit
orchestkit-complete
January 24, 2026
Select agents to install to:
npx add-skill https://github.com/yonatangross/orchestkit/blob/main/./skills/embeddings/SKILL.md -a claude-code --skill embeddingsInstallation paths:
.claude/skills/embeddings/# Embeddings
Convert text to dense vector representations for semantic search and similarity.
## Quick Reference
```python
from openai import OpenAI
client = OpenAI()
# Single text embedding
response = client.embeddings.create(
model="text-embedding-3-small",
input="Your text here"
)
vector = response.data[0].embedding # 1536 dimensions
```
```python
# Batch embedding (efficient)
texts = ["text1", "text2", "text3"]
response = client.embeddings.create(
model="text-embedding-3-small",
input=texts
)
vectors = [item.embedding for item in response.data]
```
## Model Selection
| Model | Dims | Cost | Use Case |
|-------|------|------|----------|
| `text-embedding-3-small` | 1536 | $0.02/1M | General purpose |
| `text-embedding-3-large` | 3072 | $0.13/1M | High accuracy |
| `nomic-embed-text` (Ollama) | 768 | Free | Local/CI |
## Chunking Strategy
```python
def chunk_text(text: str, chunk_size: int = 512, overlap: int = 50) -> list[str]:
"""Split text into overlapping chunks for embedding."""
words = text.split()
chunks = []
for i in range(0, len(words), chunk_size - overlap):
chunk = " ".join(words[i:i + chunk_size])
if chunk:
chunks.append(chunk)
return chunks
```
**Guidelines:**
- Chunk size: 256-1024 tokens (512 typical)
- Overlap: 10-20% for context continuity
- Include metadata (title, source) with chunks
## Similarity Calculation
```python
import numpy as np
def cosine_similarity(a: list[float], b: list[float]) -> float:
"""Calculate cosine similarity between two vectors."""
a, b = np.array(a), np.array(b)
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
# Usage
similarity = cosine_similarity(vector1, vector2)
# 1.0 = identical, 0.0 = orthogonal, -1.0 = opposite
```
## Key Decisions
- **Dimension reduction**: Can truncate `text-embedding-3-large` to 1536 dims
- **Normalization**: Most models return normalized vectors
- **Batch size**: 100-500 texts per API ca