Back to Skills

embedding-strategies

verified

Select and optimize embedding models for semantic search and RAG applications. Use when choosing embedding models, implementing chunking strategies, or optimizing embedding quality for specific domains.

View on GitHub

Marketplace

claude-code-workflows

wshobson/agents

Plugin

llm-application-dev

ai-ml

Repository

wshobson/agents
26.8kstars

plugins/llm-application-dev/skills/embedding-strategies/SKILL.md

Last Verified

January 19, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/wshobson/agents/blob/main/plugins/llm-application-dev/skills/embedding-strategies/SKILL.md -a claude-code --skill embedding-strategies

Installation paths:

Claude
.claude/skills/embedding-strategies/
Powered by add-skill CLI

Instructions

# Embedding Strategies

Guide to selecting and optimizing embedding models for vector search applications.

## When to Use This Skill

- Choosing embedding models for RAG
- Optimizing chunking strategies
- Fine-tuning embeddings for domains
- Comparing embedding model performance
- Reducing embedding dimensions
- Handling multilingual content

## Core Concepts

### 1. Embedding Model Comparison (2026)

| Model                      | Dimensions | Max Tokens | Best For                            |
| -------------------------- | ---------- | ---------- | ----------------------------------- |
| **voyage-3-large**         | 1024       | 32000      | Claude apps (Anthropic recommended) |
| **voyage-3**               | 1024       | 32000      | Claude apps, cost-effective         |
| **voyage-code-3**          | 1024       | 32000      | Code search                         |
| **voyage-finance-2**       | 1024       | 32000      | Financial documents                 |
| **voyage-law-2**           | 1024       | 32000      | Legal documents                     |
| **text-embedding-3-large** | 3072       | 8191       | OpenAI apps, high accuracy          |
| **text-embedding-3-small** | 1536       | 8191       | OpenAI apps, cost-effective         |
| **bge-large-en-v1.5**      | 1024       | 512        | Open source, local deployment       |
| **all-MiniLM-L6-v2**       | 384        | 256        | Fast, lightweight                   |
| **multilingual-e5-large**  | 1024       | 512        | Multi-language                      |

### 2. Embedding Pipeline

```
Document → Chunking → Preprocessing → Embedding Model → Vector
                ↓
        [Overlap, Size]  [Clean, Normalize]  [API/Local]
```

## Templates

### Template 1: Voyage AI Embeddings (Recommended for Claude)

```python
from langchain_voyageai import VoyageAIEmbeddings
from typing import List
import os

# Initialize Voyage AI embeddings (recommended by Anthropic for Claude)
embeddings = VoyageAIEmbeddings(
  

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
15940 chars