Select and optimize embedding models for semantic search and RAG applications. Use when choosing embedding models, implementing chunking strategies, or optimizing embedding quality for specific domains.
View on GitHubEricGrill/agents-skills-plugins
llm-application-dev
plugins/llm-application-dev/skills/embedding-strategies/SKILL.md
January 20, 2026
Select agents to install to:
npx add-skill https://github.com/EricGrill/agents-skills-plugins/blob/main/plugins/llm-application-dev/skills/embedding-strategies/SKILL.md -a claude-code --skill embedding-strategiesInstallation paths:
.claude/skills/embedding-strategies/# Embedding Strategies
Guide to selecting and optimizing embedding models for vector search applications.
## When to Use This Skill
- Choosing embedding models for RAG
- Optimizing chunking strategies
- Fine-tuning embeddings for domains
- Comparing embedding model performance
- Reducing embedding dimensions
- Handling multilingual content
## Core Concepts
### 1. Embedding Model Comparison
| Model | Dimensions | Max Tokens | Best For |
|-------|------------|------------|----------|
| **text-embedding-3-large** | 3072 | 8191 | High accuracy |
| **text-embedding-3-small** | 1536 | 8191 | Cost-effective |
| **voyage-2** | 1024 | 4000 | Code, legal |
| **bge-large-en-v1.5** | 1024 | 512 | Open source |
| **all-MiniLM-L6-v2** | 384 | 256 | Fast, lightweight |
| **multilingual-e5-large** | 1024 | 512 | Multi-language |
### 2. Embedding Pipeline
```
Document → Chunking → Preprocessing → Embedding Model → Vector
↓
[Overlap, Size] [Clean, Normalize] [API/Local]
```
## Templates
### Template 1: OpenAI Embeddings
```python
from openai import OpenAI
from typing import List
import numpy as np
client = OpenAI()
def get_embeddings(
texts: List[str],
model: str = "text-embedding-3-small",
dimensions: int = None
) -> List[List[float]]:
"""Get embeddings from OpenAI."""
# Handle batching for large lists
batch_size = 100
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
kwargs = {"input": batch, "model": model}
if dimensions:
kwargs["dimensions"] = dimensions
response = client.embeddings.create(**kwargs)
embeddings = [item.embedding for item in response.data]
all_embeddings.extend(embeddings)
return all_embeddings
def get_embedding(text: str, **kwargs) -> List[float]:
"""Get single embedding."""
return get_embeddings([text], **kwargs)[0]
# Dimension reduction with OpenAI
def get_reduced_embed