Back to Skills

detecting-data-anomalies

verified
View on GitHub

Marketplace

claude-code-plugins-plus

jeremylongshore/claude-code-plugins-plus-skills

Plugin

anomaly-detection-system

ai-ml

Repository

jeremylongshore/claude-code-plugins-plus-skills
1.1kstars

plugins/ai-ml/anomaly-detection-system/skills/detecting-data-anomalies/SKILL.md

Last Verified

January 22, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/jeremylongshore/claude-code-plugins-plus-skills/blob/main/plugins/ai-ml/anomaly-detection-system/skills/detecting-data-anomalies/SKILL.md -a claude-code --skill detecting-data-anomalies

Installation paths:

Claude
.claude/skills/detecting-data-anomalies/
Powered by add-skill CLI

Instructions

# Detecting Data Anomalies

## Overview

This skill provides automated assistance for the described functionality.

## Prerequisites

Before using this skill, ensure you have:
- Dataset in accessible format (CSV, JSON, or database)
- Python environment with scikit-learn or similar ML libraries
- Understanding of data distribution and expected patterns
- Sufficient data volume for statistical significance
- Knowledge of domain-specific normal behavior
- Data preprocessing capabilities for cleaning and scaling

## Instructions

1. Load dataset using Read tool
2. Inspect data structure and identify relevant features
3. Clean data by handling missing values and inconsistencies
4. Normalize or scale features as appropriate for algorithm
5. Split temporal data if time-series analysis is needed
1. Apply selected algorithm using Bash tool
2. Generate anomaly scores for each data point
3. Classify points as normal or anomalous based on threshold
4. Extract characteristics of identified anomalies


See `{baseDir}/references/implementation.md` for detailed implementation guide.

## Output

- Total data points analyzed
- Number of anomalies detected
- Contamination rate (percentage of anomalies)
- Algorithm used and configuration parameters
- Confidence scores for detected anomalies
- Record identifier and timestamp (if applicable)

## Error Handling

See `{baseDir}/references/errors.md` for comprehensive error handling.

## Examples

See `{baseDir}/references/examples.md` for detailed examples.

## Resources

- Isolation Forest documentation and implementation examples
- One-Class SVM for novelty detection
- Local Outlier Factor (LOF) for density-based detection
- Autoencoder-based anomaly detection for deep learning approaches
- scikit-learn anomaly detection module

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
1770 chars