Back to Skills

data-visualizer

verified

Automated data visualization for EDA, model performance, and business reporting. Activates for "visualize data", "create plots", "EDA", "exploratory analysis", "confusion matrix", "ROC curve", "feature distribution", "correlation heatmap", "plot results", "dashboard". Generates publication-quality visualizations integrated with SpecWeave increments.

View on GitHub

Marketplace

specweave

anton-abyzov/specweave

Plugin

sw-ml

development

Repository

anton-abyzov/specweave
27stars

plugins/specweave-ml/skills/data-visualizer/SKILL.md

Last Verified

January 25, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/anton-abyzov/specweave/blob/main/plugins/specweave-ml/skills/data-visualizer/SKILL.md -a claude-code --skill data-visualizer

Installation paths:

Claude
.claude/skills/data-visualizer/
Powered by add-skill CLI

Instructions

# Data Visualizer

## Overview

Automated visualization generation for exploratory data analysis, model performance reporting, and stakeholder communication. Creates publication-quality plots, interactive dashboards, and business-friendly reports—all integrated with SpecWeave's increment workflow.

## Visualization Categories

### 1. Exploratory Data Analysis (EDA)

**Automated EDA Report**:
```python
from specweave import EDAVisualizer

visualizer = EDAVisualizer(increment="0042")

# Generates comprehensive EDA report
report = visualizer.generate_eda_report(df)

# Creates:
# - Dataset overview (rows, columns, memory, missing values)
# - Numerical feature distributions (histograms + KDE)
# - Categorical feature counts (bar charts)
# - Correlation heatmap
# - Missing value pattern
# - Outlier detection plots
# - Feature relationships (pairplot for top features)
```

**Individual EDA Plots**:
```python
# Distribution plots
visualizer.plot_distribution(
    data=df['age'],
    title="Age Distribution",
    bins=30
)

# Correlation heatmap
visualizer.plot_correlation_heatmap(
    data=df[numerical_columns],
    method='pearson'  # or 'spearman', 'kendall'
)

# Missing value patterns
visualizer.plot_missing_values(df)

# Outlier detection (boxplots)
visualizer.plot_outliers(df[numerical_columns])
```

### 2. Model Performance Visualizations

**Classification Performance**:
```python
from specweave import ClassificationVisualizer

viz = ClassificationVisualizer(increment="0042")

# Confusion matrix
viz.plot_confusion_matrix(
    y_true=y_test,
    y_pred=y_pred,
    classes=['Negative', 'Positive']
)

# ROC curve
viz.plot_roc_curve(
    y_true=y_test,
    y_proba=y_proba
)

# Precision-Recall curve
viz.plot_precision_recall_curve(
    y_true=y_test,
    y_proba=y_proba
)

# Learning curves (train vs val)
viz.plot_learning_curve(
    train_scores=train_scores,
    val_scores=val_scores
)

# Calibration curve (are probabilities well-calibrated?)
viz.plot_calibration_curve(

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
10865 chars