Data validation patterns and pipeline helpers. Custom validation functions, schema evolution, and test assertions.
View on GitHubmajesticlabs-dev/majestic-marketplace
majestic-data
January 24, 2026
Select agents to install to:
npx add-skill https://github.com/majesticlabs-dev/majestic-marketplace/blob/main/plugins/majestic-data/skills/data-validation/SKILL.md -a claude-code --skill data-validationInstallation paths:
.claude/skills/data-validation/# Data Validation
**Audience:** Data engineers building validation pipelines.
**Goal:** Provide validation patterns for custom business rules.
**Framework-specific skills:**
- `pydantic-validation` - Record-level validation with Pydantic
- `pandera-validation` - DataFrame schema validation
- `great-expectations` - Pipeline expectations and monitoring
## Scripts
Execute validation functions from `scripts/validators.py`:
```python
from scripts.validators import (
ValidationResult,
DataValidator,
validate_no_duplicates,
validate_referential_integrity,
validate_date_range,
validate_value_in_set,
run_validation_pipeline,
validate_with_schema_version,
assert_schema_match,
assert_no_nulls,
assert_unique,
assert_values_in_set
)
```
## Framework Selection
| Use Case | Framework |
|----------|-----------|
| API request/response | Pydantic |
| Record-by-record ETL | Pydantic |
| DataFrame validation | Pandera |
| Type hints for DataFrames | Pandera |
| Pipeline monitoring | Great Expectations |
| Data warehouse checks | Great Expectations |
| Custom business rules | Custom functions (this skill) |
## Usage Examples
### Basic Validation
```python
from scripts.validators import validate_no_duplicates, validate_referential_integrity
# Check duplicates
result = validate_no_duplicates(df, cols=['id'])
if not result.passed:
print(f"Error: {result.message}")
print(result.failed_rows)
# Check referential integrity
result = validate_referential_integrity(df, 'user_id', users_df, 'id')
```
### Validation Pipeline
```python
from scripts.validators import DataValidator, validate_no_duplicates, validate_date_range
validator = DataValidator()
validator.add_check(lambda df: validate_no_duplicates(df, ['id']))
validator.add_check(lambda df: validate_date_range(df, 'created_at', '2020-01-01', '2025-12-31'))
results = validator.validate(df)
if not results['passed']:
for check in results['checks']:
if not check[