Generate comprehensive data profiles for DataFrames. Use for EDA, data discovery, and understanding dataset characteristics.
View on GitHubmajesticlabs-dev/majestic-marketplace
majestic-data
January 24, 2026
Select agents to install to:
npx add-skill https://github.com/majesticlabs-dev/majestic-marketplace/blob/main/plugins/majestic-data/skills/data-profiler/SKILL.md -a claude-code --skill data-profilerInstallation paths:
.claude/skills/data-profiler/# Data Profiler
**Audience:** Data engineers and analysts exploring new datasets.
**Goal:** Generate comprehensive profiles including statistics, correlations, and missing patterns.
## Scripts
Execute profiling functions from `scripts/profiling.py`:
```python
from scripts.profiling import (
profile_dataframe,
print_profile_summary,
profile_correlations,
profile_missing_patterns
)
```
## Usage Examples
### Basic Profiling
```python
import pandas as pd
from scripts.profiling import profile_dataframe, print_profile_summary
df = pd.read_csv('data.csv')
profile = profile_dataframe(df)
print_profile_summary(profile)
```
**Output:**
```
Shape: 10,000 rows x 15 columns
Memory: 1.23 MB
Column Summary:
id (int64): 10,000 unique, no nulls
email (object): 9,847 unique, 1.53% null
revenue (float64): 3,421 unique, no nulls
created_at (datetime64[ns]): 365 unique, no nulls
```
### Correlation Analysis
```python
from scripts.profiling import profile_correlations
corr = profile_correlations(df, threshold=0.7)
if corr['high_correlations']:
print("Highly correlated columns:")
for c in corr['high_correlations']:
print(f" {c['col1']} <-> {c['col2']}: {c['correlation']}")
```
### Missing Data Patterns
```python
from scripts.profiling import profile_missing_patterns
missing = profile_missing_patterns(df)
for col, stats in missing.items():
if col != 'co_missing_columns':
print(f"{col}: {stats['percent']}% missing, max {stats['consecutive_max']} consecutive")
# Check for columns missing together
if 'co_missing_columns' in missing:
for col1, col2, pct in missing['co_missing_columns']:
print(f"{col1} and {col2} both missing {pct}% of time")
```
## Profile Output Schema
```yaml
shape: [rows, columns]
memory_mb: float
columns:
column_name:
dtype: string
null_count: int
null_pct: float
unique_count: int
unique_pct: float
# Numeric columns add:
min: float
max: float
mean: f