Master color management and visual styling with Colorcet. Use this skill when selecting appropriate colormaps, creating accessible and colorblind-friendly visualizations, applying consistent themes, or customizing plot aesthetics with perceptually uniform color palettes.
View on GitHubuw-ssec/rse-plugins
holoviz-visualization
January 22, 2026
Select agents to install to:
npx add-skill https://github.com/uw-ssec/rse-plugins/blob/main/community-plugins/holoviz-visualization/skills/colormaps-styling/SKILL.md -a claude-code --skill colormaps-stylingInstallation paths:
.claude/skills/colormaps-styling/# Colormaps & Styling Skill
## Overview
Master color management and visual styling with Colorcet and theme customization. Select appropriate colormaps, create accessible visualizations, and apply consistent application styling.
### What is Colorcet?
Colorcet provides perceptually uniform colormaps designed for scientific visualization:
- **Perceptually uniform**: Changes in data correspond to proportional visual changes
- **Colorblind-friendly**: Palettes designed for accessibility
- **Purpose-built**: Specific colormaps for different data types
- **HoloViz integration**: Seamless use across HoloViews, Panel, and Bokeh
## Quick Start
### Installation
```bash
pip install colorcet
```
### Basic Usage
```python
import colorcet as cc
from colorcet import cm
import holoviews as hv
hv.extension('bokeh')
# Use a colormap
data.hvplot.scatter('x', 'y', c='value', cmap=cm['cet_goertzel'])
```
## Core Concepts
### 1. Colormap Categories
**Sequential**: Single hue, increasing intensity
```python
# Blues, greens, reds, grays
data.hvplot('x', 'y', c='value', cmap=cm['cet_blues'])
```
**Diverging**: Two hues from center point
```python
# Emphasize positive/negative
data.hvplot('x', 'y', c='value', cmap=cm['cet_coolwarm'])
```
**Categorical**: Distinct colors for categories
```python
# Qualitative data
data.hvplot('x', 'y', c='category', cmap=cc.palette['tab10'])
```
**Cyclic**: Wraps around for angular data
```python
# Angles, directions, phases
data.hvplot('x', 'y', c='angle', cmap=cm['cet_cyclic_c1'])
```
**See**: [Colormap Reference](../../references/colormaps/colormap-reference.md) for complete catalog
### 2. Accessibility
**Colorblind-safe palettes**:
```python
# Deuteranopia (red-green)
cmap=cm['cet_d4']
# Protanopia (red-green)
cmap=cm['cet_p3']
# Tritanopia (blue-yellow)
cmap=cm['cet_t10']
# Grayscale-safe
cmap=cm['cet_gray_r']
```
**See**: [Accessibility Guide](../../references/colormaps/accessibility.md) for comprehensive guidelines
### 3. Color