Back to Skills

cloudflare-vectorize

verified

Build semantic search with Cloudflare Vectorize V2. Covers async mutations, 5M vectors/index, 31ms latency, returnMetadata enum changes, and V1 deprecation. Prevents 14 errors including dimension mismatches, TypeScript types, testing setup. Use when: building RAG or semantic search, troubleshooting returnMetadata, V2 timing, metadata index, dimension errors, vitest setup, or wrangler --json output.

View on GitHub

Marketplace

claude-skills

jezweb/claude-skills

Plugin

frontend

Repository

jezweb/claude-skills
211stars

skills/cloudflare-vectorize/SKILL.md

Last Verified

January 21, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/jezweb/claude-skills/blob/main/skills/cloudflare-vectorize/SKILL.md -a claude-code --skill cloudflare-vectorize

Installation paths:

Claude
.claude/skills/cloudflare-vectorize/
Powered by add-skill CLI

Instructions

# Cloudflare Vectorize

Complete implementation guide for Cloudflare Vectorize - a globally distributed vector database for building semantic search, RAG (Retrieval Augmented Generation), and AI-powered applications with Cloudflare Workers.

**Status**: Production Ready ✅
**Last Updated**: 2026-01-21
**Dependencies**: cloudflare-worker-base (for Worker setup), cloudflare-workers-ai (for embeddings)
**Latest Versions**: wrangler@4.59.3, @cloudflare/workers-types@4.20260109.0
**Token Savings**: ~70%
**Errors Prevented**: 14
**Dev Time Saved**: ~4 hours

## What This Skill Provides

### Core Capabilities
- ✅ **Index Management**: Create, configure, and manage vector indexes
- ✅ **Vector Operations**: Insert, upsert, query, delete, and list vectors (list-vectors added August 2025)
- ✅ **Metadata Filtering**: Advanced filtering with 10 metadata indexes per index
- ✅ **Semantic Search**: Find similar vectors using cosine, euclidean, or dot-product metrics
- ✅ **RAG Patterns**: Complete retrieval-augmented generation workflows
- ✅ **Workers AI Integration**: Native embedding generation with @cf/baai/bge-base-en-v1.5
- ✅ **OpenAI Integration**: Support for text-embedding-3-small/large models
- ✅ **Document Processing**: Text chunking and batch ingestion pipelines
- ✅ **Testing Setup**: Vitest configuration with Vectorize bindings

### Templates Included
1. **basic-search.ts** - Simple vector search with Workers AI
2. **rag-chat.ts** - Full RAG chatbot with context retrieval
3. **document-ingestion.ts** - Document chunking and embedding pipeline
4. **metadata-filtering.ts** - Advanced filtering patterns

---

## ⚠️ Vectorize V2 Breaking Changes (September 2024)

**IMPORTANT**: Vectorize V2 became GA in September 2024 with significant breaking changes.

### What Changed in V2

**Performance Improvements**:
- **Index capacity**: 200,000 → **5 million vectors** per index
- **Query latency**: 549ms → **31ms** median (18× faster)
- **TopK limit**: 20 → **100** results per query
-

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
20638 chars