Build semantic search with Cloudflare Vectorize V2. Covers async mutations, 5M vectors/index, 31ms latency, returnMetadata enum changes, and V1 deprecation. Prevents 14 errors including dimension mismatches, TypeScript types, testing setup. Use when: building RAG or semantic search, troubleshooting returnMetadata, V2 timing, metadata index, dimension errors, vitest setup, or wrangler --json output.
View on GitHubSelect agents to install to:
npx add-skill https://github.com/jezweb/claude-skills/blob/main/skills/cloudflare-vectorize/SKILL.md -a claude-code --skill cloudflare-vectorizeInstallation paths:
.claude/skills/cloudflare-vectorize/# Cloudflare Vectorize Complete implementation guide for Cloudflare Vectorize - a globally distributed vector database for building semantic search, RAG (Retrieval Augmented Generation), and AI-powered applications with Cloudflare Workers. **Status**: Production Ready ✅ **Last Updated**: 2026-01-21 **Dependencies**: cloudflare-worker-base (for Worker setup), cloudflare-workers-ai (for embeddings) **Latest Versions**: wrangler@4.59.3, @cloudflare/workers-types@4.20260109.0 **Token Savings**: ~70% **Errors Prevented**: 14 **Dev Time Saved**: ~4 hours ## What This Skill Provides ### Core Capabilities - ✅ **Index Management**: Create, configure, and manage vector indexes - ✅ **Vector Operations**: Insert, upsert, query, delete, and list vectors (list-vectors added August 2025) - ✅ **Metadata Filtering**: Advanced filtering with 10 metadata indexes per index - ✅ **Semantic Search**: Find similar vectors using cosine, euclidean, or dot-product metrics - ✅ **RAG Patterns**: Complete retrieval-augmented generation workflows - ✅ **Workers AI Integration**: Native embedding generation with @cf/baai/bge-base-en-v1.5 - ✅ **OpenAI Integration**: Support for text-embedding-3-small/large models - ✅ **Document Processing**: Text chunking and batch ingestion pipelines - ✅ **Testing Setup**: Vitest configuration with Vectorize bindings ### Templates Included 1. **basic-search.ts** - Simple vector search with Workers AI 2. **rag-chat.ts** - Full RAG chatbot with context retrieval 3. **document-ingestion.ts** - Document chunking and embedding pipeline 4. **metadata-filtering.ts** - Advanced filtering patterns --- ## ⚠️ Vectorize V2 Breaking Changes (September 2024) **IMPORTANT**: Vectorize V2 became GA in September 2024 with significant breaking changes. ### What Changed in V2 **Performance Improvements**: - **Index capacity**: 200,000 → **5 million vectors** per index - **Query latency**: 549ms → **31ms** median (18× faster) - **TopK limit**: 20 → **100** results per query -