Back to Skills

cloudflare-vectorize

verified

Cloudflare Vectorize vector database for semantic search and RAG. Use for vector indexes, embeddings, similarity search, or encountering dimension mismatches, filter errors.

View on GitHub

Marketplace

claude-skills

secondsky/claude-skills

Plugin

cloudflare-vectorize

cloudflare

Repository

secondsky/claude-skills
28stars

plugins/cloudflare-vectorize/skills/cloudflare-vectorize/SKILL.md

Last Verified

January 24, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/secondsky/claude-skills/blob/main/plugins/cloudflare-vectorize/skills/cloudflare-vectorize/SKILL.md -a claude-code --skill cloudflare-vectorize

Installation paths:

Claude
.claude/skills/cloudflare-vectorize/
Powered by add-skill CLI

Instructions

# Cloudflare Vectorize

Complete implementation guide for Cloudflare Vectorize - a globally distributed vector database for building semantic search, RAG (Retrieval Augmented Generation), and AI-powered applications with Cloudflare Workers.

**Status**: Production Ready ✅
**Last Updated**: 2025-11-21
**Dependencies**: cloudflare-worker-base (for Worker setup), cloudflare-workers-ai (for embeddings)
**Latest Versions**: wrangler@4.50.0, @cloudflare/workers-types@4.20251014.0
**Token Savings**: ~65%
**Errors Prevented**: 8
**Dev Time Saved**: ~3 hours

## What This Skill Provides

### Core Capabilities
- ✅ **Index Management**: Create, configure, and manage vector indexes
- ✅ **Vector Operations**: Insert, upsert, query, delete, and list vectors
- ✅ **Metadata Filtering**: Advanced filtering with 10 metadata indexes per index
- ✅ **Semantic Search**: Find similar vectors using cosine, euclidean, or dot-product metrics
- ✅ **RAG Patterns**: Complete retrieval-augmented generation workflows
- ✅ **Workers AI Integration**: Native embedding generation with @cf/baai/bge-base-en-v1.5
- ✅ **OpenAI Integration**: Support for text-embedding-3-small/large models
- ✅ **Document Processing**: Text chunking and batch ingestion pipelines

### Templates Included
1. **basic-search.ts** - Simple vector search with Workers AI
2. **rag-chat.ts** - Full RAG chatbot with context retrieval
3. **document-ingestion.ts** - Document chunking and embedding pipeline
4. **metadata-filtering.ts** - Advanced filtering examples

## Critical Setup Rules

### ⚠️ MUST DO BEFORE INSERTING VECTORS
```bash
# 1. Create the index with FIXED dimensions and metric
bunx wrangler vectorize create my-index \
  --dimensions=768 \
  --metric=cosine

# 2. Create metadata indexes IMMEDIATELY (before inserting vectors!)
bunx wrangler vectorize create-metadata-index my-index \
  --property-name=category \
  --type=string

bunx wrangler vectorize create-metadata-index my-index \
  --property-name=timestamp \
  --type=n

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
10964 chars