Cloudflare Vectorize vector database for semantic search and RAG. Use for vector indexes, embeddings, similarity search, or encountering dimension mismatches, filter errors.
View on GitHubsecondsky/claude-skills
cloudflare-vectorize
January 24, 2026
Select agents to install to:
npx add-skill https://github.com/secondsky/claude-skills/blob/main/plugins/cloudflare-vectorize/skills/cloudflare-vectorize/SKILL.md -a claude-code --skill cloudflare-vectorizeInstallation paths:
.claude/skills/cloudflare-vectorize/# Cloudflare Vectorize Complete implementation guide for Cloudflare Vectorize - a globally distributed vector database for building semantic search, RAG (Retrieval Augmented Generation), and AI-powered applications with Cloudflare Workers. **Status**: Production Ready ✅ **Last Updated**: 2025-11-21 **Dependencies**: cloudflare-worker-base (for Worker setup), cloudflare-workers-ai (for embeddings) **Latest Versions**: wrangler@4.50.0, @cloudflare/workers-types@4.20251014.0 **Token Savings**: ~65% **Errors Prevented**: 8 **Dev Time Saved**: ~3 hours ## What This Skill Provides ### Core Capabilities - ✅ **Index Management**: Create, configure, and manage vector indexes - ✅ **Vector Operations**: Insert, upsert, query, delete, and list vectors - ✅ **Metadata Filtering**: Advanced filtering with 10 metadata indexes per index - ✅ **Semantic Search**: Find similar vectors using cosine, euclidean, or dot-product metrics - ✅ **RAG Patterns**: Complete retrieval-augmented generation workflows - ✅ **Workers AI Integration**: Native embedding generation with @cf/baai/bge-base-en-v1.5 - ✅ **OpenAI Integration**: Support for text-embedding-3-small/large models - ✅ **Document Processing**: Text chunking and batch ingestion pipelines ### Templates Included 1. **basic-search.ts** - Simple vector search with Workers AI 2. **rag-chat.ts** - Full RAG chatbot with context retrieval 3. **document-ingestion.ts** - Document chunking and embedding pipeline 4. **metadata-filtering.ts** - Advanced filtering examples ## Critical Setup Rules ### ⚠️ MUST DO BEFORE INSERTING VECTORS ```bash # 1. Create the index with FIXED dimensions and metric bunx wrangler vectorize create my-index \ --dimensions=768 \ --metric=cosine # 2. Create metadata indexes IMMEDIATELY (before inserting vectors!) bunx wrangler vectorize create-metadata-index my-index \ --property-name=category \ --type=string bunx wrangler vectorize create-metadata-index my-index \ --property-name=timestamp \ --type=n