Back to Skills

clickhouse-io

verified

ClickHouse database patterns, query optimization, analytics, and data engineering best practices for high-performance analytical workloads.

View on GitHub

Repository

majiayu000/claude-skill-registry
65stars

skills/clickhouse-io/SKILL.md

Last Verified

February 1, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/majiayu000/claude-skill-registry/blob/4dac9bc89d400a0fac01f9d30f0dd86a6cb9ba2e/skills/clickhouse-io/SKILL.md -a claude-code --skill clickhouse-io

Installation paths:

Claude
.claude/skills/clickhouse-io/
Powered by add-skill CLI

Instructions

# ClickHouse 分析模式

用於高效能分析和資料工程的 ClickHouse 特定模式。

## 概述

ClickHouse 是一個列式資料庫管理系統(DBMS),用於線上分析處理(OLAP)。它針對大型資料集的快速分析查詢進行了優化。

**關鍵特性:**
- 列式儲存
- 資料壓縮
- 平行查詢執行
- 分散式查詢
- 即時分析

## 表格設計模式

### MergeTree 引擎(最常見)

```sql
CREATE TABLE markets_analytics (
    date Date,
    market_id String,
    market_name String,
    volume UInt64,
    trades UInt32,
    unique_traders UInt32,
    avg_trade_size Float64,
    created_at DateTime
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY (date, market_id)
SETTINGS index_granularity = 8192;
```

### ReplacingMergeTree(去重)

```sql
-- 用於可能有重複的資料(例如來自多個來源)
CREATE TABLE user_events (
    event_id String,
    user_id String,
    event_type String,
    timestamp DateTime,
    properties String
) ENGINE = ReplacingMergeTree()
PARTITION BY toYYYYMM(timestamp)
ORDER BY (user_id, event_id, timestamp)
PRIMARY KEY (user_id, event_id);
```

### AggregatingMergeTree(預聚合)

```sql
-- 用於維護聚合指標
CREATE TABLE market_stats_hourly (
    hour DateTime,
    market_id String,
    total_volume AggregateFunction(sum, UInt64),
    total_trades AggregateFunction(count, UInt32),
    unique_users AggregateFunction(uniq, String)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, market_id);

-- 查詢聚合資料
SELECT
    hour,
    market_id,
    sumMerge(total_volume) AS volume,
    countMerge(total_trades) AS trades,
    uniqMerge(unique_users) AS users
FROM market_stats_hourly
WHERE hour >= toStartOfHour(now() - INTERVAL 24 HOUR)
GROUP BY hour, market_id
ORDER BY hour DESC;
```

## 查詢優化模式

### 高效過濾

```sql
-- ✅ 良好:先使用索引欄位
SELECT *
FROM markets_analytics
WHERE date >= '2025-01-01'
  AND market_id = 'market-123'
  AND volume > 1000
ORDER BY date DESC
LIMIT 100;

-- ❌ 不良:先過濾非索引欄位
SELECT *
FROM markets_analytics
WHERE volume > 1000
  AND market_name LIKE '%election%'
  AND date >= '2025-01-01';
```

### 聚合

```sql
-- ✅ 良好:使用 ClickHouse 特定聚合函式
SELECT
    toStartOfDay(created_at) AS day,
    market_id,
    sum(volume) AS total_volume,
    c

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
7525 chars