Back to Skills

bedrock

verified

AWS Bedrock foundation models for generative AI. Use when invoking foundation models, building AI applications, creating embeddings, configuring model access, or implementing RAG patterns.

View on GitHub

Marketplace

aws-agent-skills

itsmostafa/aws-agent-skills

Plugin

aws-agent-skills

Repository

itsmostafa/aws-agent-skills
974stars

/skills/bedrock/SKILL.md

Last Verified

January 14, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/itsmostafa/aws-agent-skills/blob/main//skills/bedrock/SKILL.md -a claude-code --skill bedrock

Installation paths:

Claude
.claude/skills/bedrock/
Powered by add-skill CLI

Instructions

# AWS Bedrock

Amazon Bedrock provides access to foundation models (FMs) from AI companies through a unified API. Build generative AI applications with text generation, embeddings, and image generation capabilities.

## Table of Contents

- [Core Concepts](#core-concepts)
- [Common Patterns](#common-patterns)
- [CLI Reference](#cli-reference)
- [Best Practices](#best-practices)
- [Troubleshooting](#troubleshooting)
- [References](#references)

## Core Concepts

### Foundation Models

Pre-trained models available through Bedrock:
- **Claude** (Anthropic): Text generation, analysis, coding
- **Titan** (Amazon): Text, embeddings, image generation
- **Llama** (Meta): Open-weight text generation
- **Mistral**: Efficient text generation
- **Stable Diffusion** (Stability AI): Image generation

### Model Access

Models must be enabled in your account before use:
- Request access in Bedrock console
- Some models require acceptance of EULAs
- Access is region-specific

### Inference Types

| Type | Use Case | Pricing |
|------|----------|---------|
| **On-Demand** | Variable workloads | Per token |
| **Provisioned Throughput** | Consistent high-volume | Hourly commitment |
| **Batch Inference** | Async large-scale | Discounted per token |

## Common Patterns

### Invoke Model (Text Generation)

**AWS CLI:**

```bash
# Invoke Claude
aws bedrock-runtime invoke-model \
  --model-id anthropic.claude-3-sonnet-20240229-v1:0 \
  --content-type application/json \
  --accept application/json \
  --body '{
    "anthropic_version": "bedrock-2023-05-31",
    "max_tokens": 1024,
    "messages": [
      {"role": "user", "content": "Explain AWS Lambda in 3 sentences."}
    ]
  }' \
  response.json

cat response.json | jq -r '.content[0].text'
```

**boto3:**

```python
import boto3
import json

bedrock = boto3.client('bedrock-runtime')

def invoke_claude(prompt, max_tokens=1024):
    response = bedrock.invoke_model(
        modelId='anthropic.claude-3-sonnet-20240229-v1:0',
        contentT

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
9523 chars