Back to Skills

backtesting-trading-strategies

verified

Backtest crypto and traditional trading strategies against historical data. Calculates performance metrics (Sharpe, Sortino, max drawdown), generates equity curves, and optimizes strategy parameters. Use when user wants to test a trading strategy, validate signals, or compare approaches. Trigger with phrases like "backtest strategy", "test trading strategy", "historical performance", "simulate trades", "optimize parameters", or "validate signals".

View on GitHub

Marketplace

claude-code-plugins-plus

jeremylongshore/claude-code-plugins-plus-skills

Plugin

trading-strategy-backtester

crypto

Repository

jeremylongshore/claude-code-plugins-plus-skills
1.1kstars

plugins/crypto/trading-strategy-backtester/skills/backtesting-trading-strategies/SKILL.md

Last Verified

January 22, 2026

Install Skill

Select agents to install to:

Scope:
npx add-skill https://github.com/jeremylongshore/claude-code-plugins-plus-skills/blob/main/plugins/crypto/trading-strategy-backtester/skills/backtesting-trading-strategies/SKILL.md -a claude-code --skill backtesting-trading-strategies

Installation paths:

Claude
.claude/skills/backtesting-trading-strategies/
Powered by add-skill CLI

Instructions

# Backtesting Trading Strategies

## Overview

Validate trading strategies against historical data before risking real capital. This skill provides a complete backtesting framework with 8 built-in strategies, comprehensive performance metrics, and parameter optimization.

**Key Features:**
- 8 pre-built trading strategies (SMA, EMA, RSI, MACD, Bollinger, Breakout, Mean Reversion, Momentum)
- Full performance metrics (Sharpe, Sortino, Calmar, VaR, max drawdown)
- Parameter grid search optimization
- Equity curve visualization
- Trade-by-trade analysis

## Prerequisites

Install required dependencies:

```bash
pip install pandas numpy yfinance matplotlib
```

Optional for advanced features:
```bash
pip install ta-lib scipy scikit-learn
```

## Instructions

### Step 1: Fetch Historical Data

```bash
python {baseDir}/scripts/fetch_data.py --symbol BTC-USD --period 2y --interval 1d
```

Data is cached to `{baseDir}/data/{symbol}_{interval}.csv` for reuse.

### Step 2: Run Backtest

Basic backtest with default parameters:

```bash
python {baseDir}/scripts/backtest.py --strategy sma_crossover --symbol BTC-USD --period 1y
```

Advanced backtest with custom parameters:

```bash
# Example: backtest with specific date range
python {baseDir}/scripts/backtest.py \
  --strategy rsi_reversal \
  --symbol ETH-USD \
  --period 1y \
  --capital 10000 \
  --params '{"period": 14, "overbought": 70, "oversold": 30}'
```

### Step 3: Analyze Results

Results are saved to `{baseDir}/reports/` including:
- `*_summary.txt` - Performance metrics
- `*_trades.csv` - Trade log
- `*_equity.csv` - Equity curve data
- `*_chart.png` - Visual equity curve

### Step 4: Optimize Parameters

Find optimal parameters via grid search:

```bash
python {baseDir}/scripts/optimize.py \
  --strategy sma_crossover \
  --symbol BTC-USD \
  --period 1y \
  --param-grid '{"fast_period": [10, 20, 30], "slow_period": [50, 100, 200]}'
```

## Output

### Performance Metrics

| Metric | Description |
|--------|------

Validation Details

Front Matter
Required Fields
Valid Name Format
Valid Description
Has Sections
Allowed Tools
Instruction Length:
5289 chars