LLM guardrails with NeMo, Guardrails AI, and OpenAI. Input/output rails, hallucination prevention, fact-checking, toxicity detection, red-teaming patterns. Use when building LLM guardrails, safety checks, or red-team workflows.
View on GitHubyonatangross/orchestkit
ork
January 25, 2026
Select agents to install to:
npx add-skill https://github.com/yonatangross/orchestkit/blob/main/plugins/ork/skills/advanced-guardrails/SKILL.md -a claude-code --skill advanced-guardrailsInstallation paths:
.claude/skills/advanced-guardrails/# Advanced Guardrails
Production LLM safety using NeMo Guardrails, Guardrails AI, and OpenAI moderation with red-teaming validation.
> **NeMo Guardrails 2026**: LangChain 1.x compatible, parallel rails execution, OpenTelemetry tracing. **DeepTeam**: 40+ vulnerabilities, OWASP Top 10 alignment.
## Overview
- Implementing input/output validation for LLM applications
- Preventing hallucinations and enforcing factuality
- Detecting and filtering toxic, harmful, or off-topic content
- Restricting LLM responses to specific domains/topics
- PII detection and redaction in LLM outputs
- Red-teaming and adversarial testing of LLM systems
- OWASP Top 10 for LLMs compliance
## Framework Comparison
| Framework | Best For | Key Features |
|-----------|----------|--------------|
| **NeMo Guardrails** | Programmable flows, Colang 2.0 | Input/output rails, fact-checking, dialog control |
| **Guardrails AI** | Validator-based, modular | 100+ validators, PII, toxicity, structured output |
| **OpenAI Guardrails** | Drop-in wrapper | Simple integration, moderation API |
| **DeepTeam** | Red teaming, adversarial | GOAT attacks, multi-turn jailbreaking, vulnerability scanning |
## Quick Reference
### NeMo Guardrails with Guardrails AI Integration
```yaml
# config.yml
models:
- type: main
engine: openai
model: gpt-4o
rails:
config:
guardrails_ai:
validators:
- name: toxic_language
parameters:
threshold: 0.5
validation_method: "sentence"
- name: guardrails_pii
parameters:
entities: ["phone_number", "email", "ssn", "credit_card"]
- name: restricttotopic
parameters:
valid_topics: ["technology", "support"]
- name: valid_length
parameters:
min: 10
max: 500
input:
flows:
- guardrailsai check input $validator="guardrails_pii"
- guardrailsai check input $validator="competitor_check"
output:
flows: