aka. Agent Skills
Discover skills for AI coding agents. Works with Claude Code, OpenAI Codex, Gemini CLI, Cursor, and more.
Optimize SQL query performance through EXPLAIN analysis, indexing strategies, and query rewriting for PostgreSQL, MySQL, and SQL Server. Use when debugging slow queries, analyzing execution plans, or improving database performance.
Implementing multi-layer security scanning (container, SAST, DAST, SCA, secrets), SBOM generation, and risk-based vulnerability prioritization in CI/CD pipelines. Use when building DevSecOps workflows, ensuring compliance, or establishing security gates for container deployments.
LLM and ML model deployment for inference. Use when serving models in production, building AI APIs, or optimizing inference. Covers vLLM (LLM serving), TensorRT-LLM (GPU optimization), Ollama (local), BentoML (ML deployment), Triton (multi-model), LangChain (orchestration), LlamaIndex (RAG), and streaming patterns.
Operating production Kubernetes clusters effectively with resource management, advanced scheduling, networking, storage, security hardening, and autoscaling. Use when deploying workloads to Kubernetes, configuring cluster resources, implementing security policies, or troubleshooting operational issues.
When validating system performance under load, identifying bottlenecks through profiling, or optimizing application responsiveness. Covers load testing (k6, Locust), profiling (CPU, memory, I/O), and optimization strategies (caching, query optimization, Core Web Vitals). Use for capacity planning, regression detection, and establishing performance SLOs.
Design and implement disaster recovery strategies with RTO/RPO planning, database backups, Kubernetes DR, cross-region replication, and chaos engineering testing. Use when implementing backup systems, configuring point-in-time recovery, setting up multi-region failover, or validating DR procedures.
Configure security information and event management (SIEM) systems for threat detection, log aggregation, and compliance. Use when implementing centralized security logging, writing detection rules, or meeting audit requirements across cloud and on-premise infrastructure.
Design and implement Internal Developer Platforms (IDPs) with self-service capabilities, golden paths, and developer experience optimization. Covers platform strategy, IDP architecture (Backstage, Port), infrastructure orchestration (Crossplane), GitOps (Argo CD), and adoption patterns. Use when building developer platforms, improving DevEx, or establishing platform teams.
Engineer effective LLM prompts using zero-shot, few-shot, chain-of-thought, and structured output techniques. Use when building LLM applications requiring reliable outputs, implementing RAG systems, creating AI agents, or optimizing prompt quality and cost. Covers OpenAI, Anthropic, and open-source models with multi-language examples (Python/TypeScript).
Implements feedback and notification systems including toasts, alerts, modals, progress indicators, and error states. Use when communicating system state, displaying messages, confirming actions, or showing errors.
Apply and enforce cloud resource tagging strategies across AWS, Azure, GCP, and Kubernetes for cost allocation, ownership tracking, compliance, and automation. Use when implementing cloud governance, optimizing costs, or automating infrastructure management.
Build event streaming and real-time data pipelines with Kafka, Pulsar, Redpanda, Flink, and Spark. Covers producer/consumer patterns, stream processing, event sourcing, and CDC across TypeScript, Python, Go, and Java. When building real-time systems, microservices communication, or data integration pipelines.
Provides design token system and theming framework for consistent, customizable UI styling across all components. Covers complete token taxonomy (color, typography, spacing, shadows, borders, motion, z-index), theme switching (CSS custom properties, theme providers), RTL/i18n support (CSS logical properties), and accessibility (WCAG contrast, high contrast themes, reduced motion). This is the foundational styling layer referenced by ALL component skills. Use when theming components, implementing light/dark mode, creating brand styles, customizing visual design, ensuring design consistency, or supporting RTL languages.
Document database implementation for flexible schema applications. Use when building content management, user profiles, catalogs, or event logging. Covers MongoDB (primary), DynamoDB, Firestore, schema design patterns, indexing strategies, and aggregation pipelines.
Graph database implementation for relationship-heavy data models. Use when building social networks, recommendation engines, knowledge graphs, or fraud detection. Covers Neo4j (primary), ArangoDB, Amazon Neptune, Cypher query patterns, and graph data modeling.
Async communication patterns using message brokers and task queues. Use when building event-driven systems, background job processing, or service decoupling. Covers Kafka (event streaming), RabbitMQ (complex routing), NATS (cloud-native), Redis Streams, Celery (Python), BullMQ (TypeScript), Temporal (workflows), and event sourcing patterns.
Implement applications using Google Cloud Platform (GCP) services. Use when building on GCP infrastructure, selecting compute/storage/database services, designing data analytics pipelines, implementing ML workflows, or architecting cloud-native applications with BigQuery, Cloud Run, GKE, Vertex AI, and other GCP services.
Time-series database implementation for metrics, IoT, financial data, and observability backends. Use when building dashboards, monitoring systems, IoT platforms, or financial applications. Covers TimescaleDB (PostgreSQL), InfluxDB, ClickHouse, QuestDB, continuous aggregates, downsampling (LTTB), and retention policies.
Write GitHub Actions workflows with proper syntax, reusable workflows, composite actions, matrix builds, caching, and security best practices. Use when creating CI/CD workflows for GitHub-hosted projects or automating GitHub repository tasks.
Builds dashboards, reports, and data-driven interfaces requiring charts, graphs, or visual analytics. Provides systematic framework for selecting appropriate visualizations based on data characteristics and analytical purpose. Includes 24+ visualization types organized by purpose (trends, comparisons, distributions, relationships, flows, hierarchies, geospatial), accessibility patterns (WCAG 2.1 AA compliance), colorblind-safe palettes, and performance optimization strategies. Use when creating visualizations, choosing chart types, displaying data graphically, or designing data interfaces.
Manage Linux systems covering systemd services, process management, filesystems, networking, performance tuning, and troubleshooting. Use when deploying applications, optimizing server performance, diagnosing production issues, or managing users and security on Linux servers.
Strategic guidance for operationalizing machine learning models from experimentation to production. Covers experiment tracking (MLflow, Weights & Biases), model registry and versioning, feature stores (Feast, Tecton), model serving patterns (Seldon, KServe, BentoML), ML pipeline orchestration (Kubeflow, Airflow), and model monitoring (drift detection, observability). Use when designing ML infrastructure, selecting MLOps platforms, implementing continuous training pipelines, or establishing model governance.
Monitoring, logging, and tracing implementation using OpenTelemetry as the unified standard. Use when building production systems requiring visibility into performance, errors, and behavior. Covers OpenTelemetry (metrics, logs, traces), Prometheus, Grafana, Loki, Jaeger, Tempo, structured logging (structlog, tracing, slog, pino), and alerting.
Implements onboarding and help systems including product tours, interactive tutorials, tooltips, checklists, help panels, and progressive disclosure patterns. Use when building first-time experiences, feature discovery, guided walkthroughs, contextual help, setup flows, or user activation features. Provides timing strategies, accessibility patterns (keyboard, screen readers, reduced motion), and metrics for measuring onboarding success.